
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Li, Zhe]
On: 13 October 2010
Access details: Access Details: [subscription number 928020538]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Remote Sensing Letters
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t915281289

Integrating Mahalanobis typicalities with a neural network for rubber
distribution mapping
Zhe Liab; Jefferson M. Foxb

a Canada Center for Remote Sensing, Natural Resources Canada, Ottawa, ON, Canada b East-West
Center, Honolulu, HI, USA

First published on: 13 October 2010

To cite this Article Li, Zhe and Fox, Jefferson M.(2011) 'Integrating Mahalanobis typicalities with a neural network for
rubber distribution mapping', Remote Sensing Letters, 2: 2, 157 — 166, First published on: 13 October 2010 (iFirst)
To link to this Article: DOI: 10.1080/01431161.2010.505589
URL: http://dx.doi.org/10.1080/01431161.2010.505589

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t915281289
http://dx.doi.org/10.1080/01431161.2010.505589
http://www.informaworld.com/terms-and-conditions-of-access.pdf
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Accurate rubber distribution mapping is critical to the study of its expansion and

to provide a better understanding of the consequences of land-cover and land-use

change on carbon and water cycles. Employing Mahalanobis typicalities as inputs

to a hard classifier to enhance the capability of generalization has not previously

been explored. This letter presents a novel approach by integrating Mahalanobis

typicalities with the multi-layer perceptron (MLP) neural network for mapping of

rubber. A case study from the Thai–Lao and Sino–Lao borders was conducted

using Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) data. Different combinations of the nine ASTER bands including

Visible and Near Infrared (VNIR) and Short-wave Infrared (SWIR),

Normalized Difference Vegetation Index (NDVI) and Mahalanobis typicalities

were used as input variables to the MLP. Results indicate that including

Mahalanobis typicalities as input variables can improve the MLP’s performance

and increase the user’s accuracy of rubber mapping.

1. Introduction

The Pará rubber tree (Hevea brasiliensis) initially grew only in the Amazon
Rainforest. Today Rubber plantations are expanding rapidly throughout montane

mainland Southeast Asia (MMSEA) (Fox and Vogler 2005) and rubber has become

the major commercial crop replacing traditional agriculture and secondary forests

(Ziegler et al. 2009). An abrupt shift in land use from ecologically important tropical

forests and traditionally managed swidden fields to large-scale rubber plantations can

result in a great loss of ecosystem services and affect local energy, water and carbon

fluxes (Van Ranst et al. 1996, Li et al. 2007, Hu et al. 2008). Accurate mapping of

rubber distribution and differentiating rubber from second-growth forests is critical
to the study of rubber expansion and its implications for water and carbon dynamics

in MMSEA.

Remotely sensed imagery classification is one of the main means of deriving land-

use and land-cover information. Taking advantages of their non-parametric require-

ments, numerous machine learning techniques have been widely used in imagery

classification. However, a major challenge for mapping mature rubber is overestima-

tion by misclassifying second-growth forests as rubber, because first the area of

rubber occupies a very small proportion relative to other land-cover types such as

*Corresponding author. Email: Zhe.Li@NRCan.gc.ca

Remote Sensing Letters
ISSN 2150-704X print/ISSN 2150-7058 online # 2011 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/01431161.2010.505589

Remote Sensing Letters

Vol. 2, No. 2, June 2011, 157–166

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
i
,
 
Z
h
e
]
 
A
t
:
 
1
3
:
5
2
 
1
3
 
O
c
t
o
b
e
r
 
2
0
1
0



forests and croplands, and second rubber trees have similar multi-spectral reflectance

characteristics with tropical evergreen vegetation.

Many researchers use ancillary data in addition to spectral bands to improve

remote sensing classification accuracy. These data may include information regarding

terrain (e.g. elevation, slope and aspect), environmental (e.g. temperature and moist-
ure), textural (e.g. fractal dimension), contextual factors (e.g. spatial dependence)

(Ghimire et al. 2010) and enhanced or transformed images such as principal compo-

nents and tasselled cap components (Jin and Sader 2005). Some researchers employ

soft image fractions as inputs to a hard classifier to yield higher classification accu-

racy. For example, Roberts et al. (2002) combined spectral mixture analysis (SMA)

fractions as inputs to a classification tree for large area land-cover mapping. As

rubber is a planted crop in the MMSEA region, its distribution is not greatly affected

by terrain, environmental factors or land suitability, but rather by the availability of
land. We confirmed this hypothesis when we conducted rubber surveys in both

suitable and unsuitable areas for rubber plantations in northeast Thailand. Initial

experiments indicate that including growth suitability factors in rubber distribution

mapping contributes little to improving accuracy. Therefore, we decided to explore

new factors to highlight features of rubber that can distinguish it from other species.

Inspired by Roberts et al. (2002), in this study, we are particularly interested in

examining the potential for integrating Mahalanobis typicalities with the multi-

layer perceptron (MLP) neural network for rubber classification. Although numerous
studies of remote sensing classification using the MLP neural network have been

conducted and both Mahalanobis distance (MD) based and neural approaches are

individually well established, incorporating these two techniques in vegetation classi-

fication has not been previously explored.

2. Methodology

2.1 Mahalanobis typicality

In statistics, MD is a distance measure introduced by P.C. Mahalanobis in 1936

(Foody et al. 1992). It is based in part on correlations between variables and is a

measure of class relative distance to the class mean, scaled by the class covariance.
MD is a multivariate equivalent of a z-score and is expressed as

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� miÞ

T V�1
i ðx� miÞ

q
(1)

where x is the data vector for the pixels in all wavebands, mi the mean vector for class i

over all pixels, Vi the variance/covariance matrix for class i and T the transpose of the

matrix (Foody et al. 1992).

Mahalanobis distance is a useful way of determining similarity of an unknown

sample to a known group of samples. As Mahalanobis distance has a w2 with degrees

of freedom equal to the number of independent variables minus 1, it can be used to

produce the measure known as Typicality Probability (or simply Typicality).

Specifically, Typicality is the probability of any location having a MD greater or
equal to that observed at the location of interest (figure 1). Locations having attri-

butes identical to the multivariate centroid have a typicality of 1.0, with less typical

locations approaching a typicality of 0.0 at the limits of the distribution (Li and

Eastman 2010). The output of Mahalanobis typicality is not a single classified land-
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cover map, but rather, a set of images (one per class) that express the typicality of the

pixel relative to the training classes.

The concept of typicality expresses the degree to which the values of a set of input

variables at a location are typical of known instances of a specific class (Foody et al.

1992, Eastman et al. 2005). In contrast to relative measures of class membership

derived from maximum likelihood method, the typicalities suggest whether it is
reasonable to assume that a case really belongs to a particular class because they

are a measure of the absolute strength of class membership (Foody 2002). That is, a

high typicality to an allocated class necessarily leads to a high membership, but not

vice versa. For example, a very low typicality to the allocated class could indicate that

the case is actually a member of an untrained class (Foody 2002). The typicality can be

used to refine classifications such as to find areas that are misclassified because of

missing training data (Sangermano and Eastman 2007). Recently Mahalanobis typi-

cality has been applied to species distribution modelling (Hernandez et al. 2008).

2.2 Multi-layer perceptron neural network

The MLP is the most widely used artificial neural network model for pattern recogni-

tion (Hinton and Salakhutdinov 2006). In an MLP, nodes (or neurons) are organized

into different layers (one input layer, one output layer and one or more hidden layers),

each generally fully interconnected to the following layer. The input layer takes input

patterns as represented by the variables. The output layer outputs a measure of
support, typically forced to a 0–1 range by the activation layer function, for each

land-cover class. The role of the hidden layer nodes, in combination with the connec-

tion weights, serves to create a set of hyperplanar discriminant functions that can

separate the variable space (image band space in this case) into regions associated with

the different classes (Richards and Jia 2006). An MLP has to be trained to perform a

specific task. The most popularly used training algorithm is the back propagation

(BP) method, which iteratively reduces the error between the desired and actual

output values through a gradient descent technique known as the delta rule. The
forward and backward passes continue until the network has ‘learned’ the character-

istics of all the classes and the root mean square error (RMSE) between fitted and

ideal activation levels reaches an acceptable value.
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Figure 1. Graphical representation of the Mahalanobis typicalities (typicality probability).
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2.3 Data and methods

The study sites we chose for the experiments were the Thai–Lao (upper left:

103�2703900E, 18�3703800N; lower right: 103�5903900E, 18�104400N) and the Sino–Lao

(upper left: 100�4905800E, 21�3902500N; 101�3202000E, 21�003000N) borders, where rubber

has been widely and intensively planted, especially in Nongkai province of Thailand

and Yunnan province of China, where rubber planting has a long history.

Vegetation mapping has relied on medium spatial resolution imagery from multi-

spectral sensors such as Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper

Plus (ETMþ), hyperspectral imagery, high-resolution imagery (e.g. IKONOS and
Quickbird) and multi-spectral and multi-temporal imagery such as Moderate

Resolution Imaging Spectroradiometer (MODIS). Recently, the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been of

special interest to remote sensing of environment in that it has relatively broad spectral

resolution and relatively fine spatial resolution. We chose ASTER imagery for the

rubber mapping as it provides visible and near–infrared bands (VNIR) with 15 m pixels

and short-wave infrared bands (SWIR) with 30 m pixels wavelengths that are particu-

larly important for vegetation discrimination.
The ASTER data used in this study were the orthorectified and terrain-corrected

On-Demand L3 products which were acquired from Land Processes Distributed Active

Archive Center (LPDAAC). An ASTER granule (scene) covers approximately

60 � 60 km2. We chose dry season images to reflect dry season vegetation phenology.

The image for Thai–Lao border was acquired on 24 April 2005 and for Sino–Lao

border on 8 February 2005. We used NASA’s Landsat GeoCover products to identify

land-use and land-cover types for use as training sites. Rubber identification was

primarily based on global positioning system (GPS) ground reference samples collected
from field and high-resolution IKONOS images from Google Earth. As the main

purpose of the experiment was to map rubber distribution, only five broad categories

were digitized for the Sino–Lao site. As mature rubber trees are easily confused with

eucalyptus, which is widely planted in Thailand, the eucalyptus category was indentified

as a separate class for the Thai–Lao site (not for the Sino–Lao site). For both the two

sites, rubber is indentified as a single class (table 1). The numbers of rubber samples for

the two sites account for 0.029 and 0.214% of the total image pixels, respectively.

Separate testing sites were also developed for classification accuracy assessment.
An image fusion technique was used to convert the ASTER VNIR and SWIR bands

into the same resolution. To do this, the SWIR bands (S4–S9) were first transformed

Table 1. Number of training and testing pixels for the two study sites.

Thai–Lao border study site Sino–Lao border study site

Class
ID

Class
name

Training
pixels

% of
image

Testing
pixels

Training
pixels

% of
image

Testing
pixels

1 Rubber 3,453 0.029 6,807 33,439 0.21 48,880
2 Eucalyptus 1,499 0.013 2,819 N/A N/A N/A
3 Water 45,980 0.388 11,657 3,270 0.02 508
4 Paddy 4,449 0.038 2,135 7,600 0.05 2,694
5 Bare 3,387 0.029 401 184 0.00 845
6 Forest 33,688 0.284 3,216,232 132,994 0.82 50,521

Total 92,456 0.780 3,240,051 177,487 1.09 103,448
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into six principal components, and then these components were back-projected after
replacing the first component with a higher-resolution image, which is usually a

panchromatic image. As the panchromatic image is not available for ASTER data,

we used the first component (accounting for over 96% of total variance) generated from

the three VNIR bands, to serve as the higher-resolution image. As the VNIR compo-

nent 1 is highly correlated with the SWIR component 1 (r ¼ 0.94), the image fusion

technique is less likely to produce major artefacts. This image enhancement approach

produced ASTER SWIR pixels with a sampling of 15 m, instead of the original 30 m.

We examined a variety of combinations of input variables for the land-cover
classifications. The input metrics incorporate ASTER multi-spectral bands (VNIR

and enhanced SWIR), normalized difference vegetation index (NDVI) and typical-

ities derived from the MD classifier (see table 2). With the same training data, three

ASTER VNIR bands and six enhanced SWIR bands were used as input variables to

generate Mahalanobis typicalities. Six and five typicality images (corresponding to

the six and five classes) were created for the Thai–Lao and Sino–Lao images,

respectively.

The neural network model used in this study was the MLP module of IDRISI 16.0
Taiga. The training of the MLP neural network is a heuristic process. For each

variable combination, the MLP was run 20 times using fixed iterations but with

different learning rates, which are sensitive to convergence of training. The best results

achieved from each of the 20 trials were chosen for analysis. To avoid over-training or

under-training the classifier, 30,000 and 10,000 iterations were set for Thai–Lao and

Sino–Lao images, respectively, so that both the training RMSE and testing RMSE

decreased to between 0.001 and 0.1. To make the MLP converge quickly but with less

fluctuation, the learning rate was set to 0.0001 for both study sites. To maintain the
best capability of MLP’s generalization, the numbers of hidden layer neurons were set

between 8 and 20 by using the following equation, where INT represents the operation

of rounding to the nearest integer number.

Nhidden ¼ INT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ninput �Noutput

p� �
(2)

3. Validation

Separate and independent testing sites were developed to validate performance of the
MLP model with different input variable combinations. Error matrixes were

Table 2. Input variable combinations for the MLP.

Name Input variable combination

VC1 VNIR
VC2 VINR þ SWIR
VC3 VNIR þ NDVI
VC4 VNIR þ SWIR þ NDVI
VC5 VNIR þ typicality
VC6 VNIR þ SWIR þ typicality
VC7 VNIR þ NDVI þ typicality
VC8 VNIR þ SWIR þ NDVI þ typicality
VC9 NDVI þ typicality
VC10 Typicality
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generated for each of the 10 classification results with the 10 different variable

combinations for each of the two study sites. Besides total accuracy and overall

kappa coefficient for all the classes, we also looked at kappa coefficient, producer’s

accuracy and user’s accuracy for the rubber category (Congalton 1991). In addition,

we also used a single index to comprehensively evaluate the performance of the
classification results, the geometric mean of indices (GMI):

GMI ¼
Yn

i¼1

ai

 !1=n

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � a2 � � � � � an

n
p

(3)

where a1–an represent n assessment indices that have the same tendency of goodness

when they monotonically increase or decrease, and have the same scales. Specifically,

in this study, a1–an represent five indices, that is, total accuracy and overall kappa

coefficient for all categories, kappa coefficient, producer’s accuracy and user’s accu-

racy for the rubber category. The advantage of the geometric mean is that it indicates

the central tendency or typical value of a set of numbers in contrast to the arithmetic

mean. For example, suppose we have two sets of numbers, 0.5 and 0.5 versus 0.1 and
0.9, representing user’s accuracy and producer’s accuracy, respectively, for each set.

Both the sets have the same arithmetic mean, namely, 0.5, but different geometric

means (0.5 and 0.3, respectively). Obviously, the geometric mean is more informative

and reasonable as we prefer the former dataset over the latter, which achieved too low

user’s accuracy (0.1).

4. Results and discussion

Figure 2(a) shows the land-cover classification results using different combinations of

variables for the Thai–Lao border site. Table 3 and figure 3(a) show the accuracy

assessment. In the Thai–Lao border site, rubber and eucalyptus are mainly distributed

on the Thai side (south of the Mekong River). In Laos (north of the Mekong), land

cover was dominated by forests and paddy rice and very little rubber or eucalyptus. As

can be seen from figure 2(a): (i) to (j), with only spectral information VNIR and/or

SWIR (VC1 and VC2), the MLP classifier overestimated the number of rubber pixels

(in red), namely, it misclassified a large number of forest pixels as rubber in Laos,
which caused high commission errors (or low user’s accuracies (0.005 and 0.046,

respectively)) for the rubber class (figure 3(a)). Although the producer’s accuracies

and kappa coefficients for the rubber class increased when the NDVI was introduced,

overestimation of rubber still remained (figure 2(a): (k) using VC3 and (l) using VC4).

However, it can be seen from figure 3(a) that the GMI sharply increased at VC5 from

0.124 to 0.583 when the Mahalanobis typicalities were included (from figure 2(a): (m)

to (r)), and all six variable combinations show similar trends in accuracy. All six maps

show reasonable results in comparison with maps (i)–(l). The GMI, total accuracy and
overall kappa coefficient for the six classes and the user’s accuracy for the rubber class

are notably higher than those without including the typicalities, although they did not

perform better than those using VC2, VC3 and VC4 in terms of the producer’s

accuracy and kappa coefficient for the rubber class. For land-cover mapping over a

large spatial area, a low commission error (high user’s accuracy) is extremely impor-

tant, as the rubber accounts for a very small proportion relative to the forest and other

vegetation. Of the 10 maps created, figure 2(a): (r) with only typicality information
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(i)

(l)

(o)

(r)

(m)

(p)
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Figure 2. (a): Land-cover classifications for Thai–Lao border site with 10 different metrics;
and (b): Land-cover classifications for Sino–Lao border site with 10 different variables combi-
nations. (i)–(r) correspond to variable combinations VC1–VC10 (see table 2 for details),
respectively.

Table 3. Accuracy assessment of classification for the Thai–Lao study site.

Assessment
indices VC1 VC2 VC3 VC4 VC5 VC6 VC7 VC8 VC9 VC10 MD

Total accuracy 0.766 0.695 0.423 0.380 0.988 0.989 0.990 0.991 0.993 0.997 0.680
Overall Kappa

coefficient
0.034 0.036 0.016 0.014 0.461 0.468 0.493 0.529 0.582 0.757 0.030

User’s accuracy
for rubber

0.005 0.046 0.026 0.006 0.977 0.976 0.976 0.977 0.976 0.977 0.014

Producer’s
accuracy for
rubber

0.050 0.878 0.935 0.946 0.390 0.402 0.391 0.389 0.404 0.392 0.656

Kappa
coefficient for
rubber

0.031 0.873 0.930 0.920 0.389 0.401 0.390 0.389 0.404 0.391 0.619

Geometric mean
(GMI)

0.046 0.245 0.172 0.124 0.583 0.592 0.592 0.600 0.620 0.647 0.163

Arithmetic mean 0.177 0.506 0.466 0.453 0.641 0.647 0.648 0.655 0.672 0.703 0.400

Note: VC1–VC10 represent variable combinations, see table 2 for details; MD represents
Mahalanobis distance classifier; numbers in bold represent the highest values for each accuracy
category.
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(VC10) achieved the highest GMI, total accuracy, overall kappa coefficient, single

kappa coefficient and user’s accuracy. To examine whether integrating Mahalanobis
typicalities in the MLP outperforms MD classifier itself, a classification with the MD

classifier using the VC4 inputs was also conducted. It is interesting to see that the MD

slightly outperformed the MLP with VC4 inputs in terms of total accuracy, overall

kappa coefficient and user’s accuracy for rubber class, whereas the MLP notably

outperformed the MD when using the same input variable combinations plus the

Mahalanobis typicalities (VC8). And all MLPs integrating the typicalities provided

better results than the MD in terms of most of the indices.

For the Sino–Lao border site, about 10 times of rubber training pixels than the
Thai–Lao border site were used (table 1), because rubber is extensively planted in

0.00
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Figure 3. Accuracy assessment for classifications in: (a) Thai–Lao border; and (b) Sino–Lao
border, with different variable combinations/classifiers (VC1–VC10 represent variable combi-
nations, see table 2 for details; MD represents Mahalanobis distance classifier).
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Yunnan, China, and ground reference samples were less difficult to collect than the
Thai–Lao border site. All 10 output maps from the MLP (figure 2(b)) using the 10

different input variable combinations achieved high accuracies and kappa coefficients

and appear relatively similar (figure 3). The MLP using the typicalities still out-

performed those without using them in terms of GMI (table 4). Best results were

achieved from figure 2(b): (n) and (r). The former used VNIR and SWIR together with

the typicalities (VC6), and the latter used only typicalities (VC10). For this study site,

the MD classifier achieved equivalent or slightly less-accurate results than the MLPs

integrating the typicalities. This result suggests that a larger training set leads to less
difference between the MLP and the MD classifier and the conventional approach is

similarly challenged by limited training samples, as inverting the matrices requires a

large sample.

The above results indicate that employing Mahalanobis typicalities as input vari-

ables to the MLP is equivalent to introducing ancillary informative feature vectors.

This is analogous to incorporating pre-processed or transformed original spectral

bands to classifiers to enhance their performance. The well-trained MLP neural

network gains information from the typicality maps of each land-cover class and
learns to recognize the pattern of ‘real’ rubber pixels defined by the Mahalanobis

typicalities. That is, the MLP was more likely to assign the rubber category to a case

that is most typical of the rubber samples encountered in the training set, and thus

tends to reduce commission errors for the rubber class.

5. Conclusions

This study conducted rubber classifications using the MLP neural network by inte-

grating Mahalanobis typicalities. Incorporation of Mahalanobis typicalities and

MLP neural network facilitates the combination of parametric and non-parametric

Table 4. Accuracy assessment of classification for the Sino–Lao study site.

Assessment
indices VC1 VC2 VC3 VC4 VC5 VC6 VC7 VC8 VC9 VC10 MD

Total accuracy 0.951 0.957 0.981 0.983 0.952 0.986 0.977 0.980 0.975 0.982 0.980
Overall Kappa

coefficient
0.906 0.917 0.964 0.969 0.908 0.973 0.957 0.962 0.954 0.966 0.962

User’s accuracy
for rubber

0.929 0.922 0.998 0.999 0.945 0.999 0.988 0.989 0.994 0.984 0.984

Producer’s
accuracy for
rubber

0.970 0.992 0.978 0.983 0.983 0.988 0.981 0.986 0.975 0.994 0.990

Kappa
coefficient for
rubber

0.940 0.984 0.960 0.969 0.966 0.977 0.965 0.973 0.954 0.988 0.981

Geometric mean
(GMI)

0.939 0.954 0.976 0.981 0.950 0.984 0.973 0.978 0.970 0.983 0.979

Arithmetic mean 0.939 0.954 0.976 0.981 0.951 0.984 0.973 0.978 0.970 0.983 0.979

Note: VC1–VC10 represent variable combinations, see table 2 for details; MD represents
Mahalanobis distance classifier; numbers in bold represent the highest values for each accuracy
category.
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models that can take advantage of both approaches. The proposed method can

improve MLP’s capability of generalization, particularly increasing user’s accuracy.
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