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Abstract 

Ecological Forecasting, predicting the effects of changes in the physical, chemical, and 

biological environments on ecosystem state and activity, is an emerging field with 

significant socio-economic implications. Though the concepts behind and expectations 

for ecological forecasting are clear, progress towards producing consistent, reliable, 

and objective forecasts has been slow. Lack of infrastructure for integrating a variety 

of modeling tools, information technologies, and ground and satellite data sets that 

could serve the diverse needs of eco-hydrological community has been one key 

impediment. Here, we describe our efforts at such an integrated system called the 
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Terrestrial Observation and Prediction System (TOPS). TOPS is a data and modeling 

software system designed to seamlessly integrate data from satellite, aircraft, and 

ground sensors with weather/climate and application models to expeditiously produce 

operational nowcasts and forecasts of ecological conditions. TOPS has been operating 

at a variety of spatial scales, ranging from individual vineyard blocks in California, 

and predicting weekly irrigation requirements, to global scale producing regular 

monthly assessments of global vegetation net primary production.  

 
Introduction 

 

The latest generation of NASA Earth Observing System (EOS) satellites has 

brought a new dimension to monitoring the living part of the Earth system – the 

biosphere. EOS data can now measure weekly global productivity of plants and ocean 

chlorophyll and related biophysical factors, such as changes to land cover and to the rate 

of snowmelt. However, a greater economic benefit would be realized by forecasting 

biospheric conditions (Clark et al., 2001). Such predictive ability would provide an 

advanced decision-making tool to be used in the mitigation of natural hazards or in the 

exploitation of economically advantageous trends. Imagine if it were possible to 

accurately predict shortfalls or bumper crops, epidemics of vector-borne diseases such as 

malaria and West Nile virus, or wildfire danger as much as 3 to 6 months in advance. 

Such a predictive tool would allow improved preparation and logistical efficiencies. 

 

Forecasting provides decision-makers with insight into the future status of 

ecosystems and allows for the evaluation of the status quo as well as alternatives or 

preparatory actions that could be taken in anticipation of future conditions. Whether 

preparing for the summer fire season or for spring floods, knowledge of the magnitude 

and direction of future conditions can save time, money, and valuable resources. Space- 

and ground-based observations have significantly improved the ability to monitor natural 

resources and to identify potential changes, but these observations can describe current 

conditions only. This information is useful, but many resource managers often need to 

make decisions months in advance for the coming season. Recent advances in climate 
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forecasting have elicited strong interest in a variety of economic sectors: agriculture 

(Cane et al., 1994), health (Thomson et al., 2005) and water resources (Wood et al., 

2001). The climate forecasting capabilities of coupled ocean-atmosphere global 

circulation models (GCMs) have steadily improved over the past decade (Zebiak 2003). 

Given observed anomalies in sea-surface temperatures (SSTs) from satellite data, GCMs 

are now able to forecast general climatic conditions, including temperature and 

precipitation trends, 6 to 12 months into the future with reasonable accuracy (Goddard et 

al., 2001; Robertson et al., 2004).  

While such climatic forecasts alone are useful, the advances in ecosystem 

modeling allow specific exploration of the direct impacts of these future climate trends 

on the ecosystem. One day predictions made in March might accurately forecast whether 

Montana’s July winter wheat harvest will be greater or less than normal, and whether the 

growing season will be early or late.  

One of the key problems in adapting climate forecasts to natural ecosystems is the 

"memory" that these systems carry from one season to the next. For example, soil 

moisture levels, plant seed banks, and fire fuel build-up are all affected by cumulative 

ecosystem processes that occur over many seasons or years. Simulation models are often 

the best tools to carry forward information about this spatio-temporal memory. The 

ability of models to describe and to predict ecosystem behavior has advanced 

dramatically over the last two decades, driven by major improvements in process-level 

understanding, climate mapping, computing technology, and the availability of a wide 

range of satellite- and ground-based sensors (Waring and Running 1998). In this chapter, 

we summarize the efforts of the Ecological Forecasting Group at NASA Ames Research 

Center over the past six years to integrate advances in these areas and develop an 

operational ecological forecasting system. 

 

 

Background of Ecological Forecasting 

 

Ecological Forecasting (EF) predicts the effects of changes in the physical, 

chemical, and biological environments on ecosystem state and activity (Clark et al., 
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2001). EF is pursued with a variety of tools and techniques in different communities. For 

example, for community ecologists EF commonly includes methods for describing or 

predicting the ecological niche for various species. Much of invasive species forecasting 

falls in this area, where a set of conditions associated with the presence/absence of a 

species is derived and then these empirical relations are used to predict the occurrence or 

potential for occurrence of that species within a landscape. Similarly, bio-geographers 

use EF to predict species/community compositions in response to changes in long-term 

climate or geo-chemical conditions. Climate change and carbon cycling research falls in 

this category of predicting the state and/or functioning of ecosystems over long-lead 

times of decades to centuries. In contrast, the eco-hydrological community uses EF as a 

way of extending weather/climate predictions, with lead times ranging from days to 

months, for use in operational decision-making. Examples include forecasts of frost 

damage, flood/streamflow, crop yield, and pest/disease outbreaks. Though such forecasts 

are age-old among practitioners of various trades, there has been much subjectivity in the 

decision-making process that is hard to quantify and pass on to later generations. 

Providing an operational forecasting capability brings a new level of complexity to 

creating, verifying, and distributing information that is worth acting upon.  

 

Components of ecological forecasting for eco-hydrological applications 

 

Increasing interest in ecological forecasting is evident from several recent 

applications ranging from streamflows (Wood et al., 2001), crop yields (Cane et al., 

1994) and human health (Thompson et al., 2006). These attempts tend to focus on 

specific watersheds or a geographic location with a very specific application; therefore 

they do not deal with EF as a broad theme associated with certain tools and technologies.  

Our past heritage in eco-hydrology and NASA’s strengths in global observations and 

technology led us to focus on the development of a general data and modeling system 

that allows to produce operational nowcasts and forecasts relevant for many in the eco-

hydrological community. Here we briefly review the important components that make 

our approach to EF possible, extensible, and economically viable.  
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Ecosystem Models: As in numerical weather prediction, models form the basis for EF. 

These models range in complexity, computational requirements, and in the representation 

of the spatio-temporal details of a given process or system. For example, biogeochemical 

cycling models are often complex and versatile in the sense that the basic ingredients that 

they simulate (carbon, water, nutrient cycling) form the core information for a variety of 

biospheric activities of economic value. For example, changes in carbon cycling 

expressed as net primary production (NPP) can be a key indicator of crop yields, forage 

production or production of board feet of wood.  These models use the 

Soil-Plant-Atmosphere continuum concept to estimate various water (evaporation, 

transpiration, stream flows, and soil water), carbon (net photosynthesis, plant growth) and 

nutrient flux (uptake and mineralization) processes. They are adapted for all major 

biomes exploiting their unique eco-physiological principles such as drought resistance, 

cold tolerance, etc. (e.g. BIOME-BGC, Waring and Running 1998; CASA, Potter et al., 

2003). The models are initialized with ground-based soil physical properties and satellite-

based vegetation information (type and density of plants). Following the initialization 

process, daily weather conditions (max/min temperatures, solar radiation, humidity, and 

rainfall) are used to drive various ecosystem processes (e.g., soil moisture, transpiration, 

evaporation, photosynthesis, and snowmelt) that can be translated into drought, crop 

yields, NPP, and water yield estimates. We currently use a diagnostic (with satellite data 

input) version of BGC to produce nowcasts and a prognostic (without satellite data 

inputs) version of BIOME-BGC to produce forecasts of carbon and water related fluxes. 

 

Extensive discussion on types of ecosystem models and their relevant applications can be 

found in Waring and Running (1998) and Canham et al., (1997). 

  

Microclimate mapping from surface weather observations:  Access to reliable weather 

data is a pre-requisite for ecosystem modeling. The availability of weather observations 

has been a key obstacle in the development of real-time EF systems. Historically, weather 

data was made available on tapes or CDs months after it was collected and corrected for 

errors. This time lag precluded real-time simulations, a precursor to developing 

forecasting capability. Through the World Wide Web, however, there are now thousands 
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of on-line weather stations providing real-time weather data. These real-time data include 

ground-based observations of max/min/dew temperature and wind speed, satellite-based 

solar radiation, and spatially continuous rainfall fields produced by weather agencies.  

Another important advancement for EF is the ability to grid point observations 

onto the landscape at various spatial resolutions, as observations are rarely sufficient to 

represent the spatial variability. Models such as PRISM, DAYMET, and SOGS (Daly et 

al.1994; Thornton et al. 1997; Jolly et al. 2004) ingest point surface observations, and use 

topography and other ancillary information to compute spatially continuous 

meteorological fields (temperature, humidity, solar radiation, and rainfall) that can be 

directly used in ecosystem modeling.  

 

Weather/Climate Forecasts: There is considerable optimism among the climate 

community about our ability to forecast climate into the future (Trenberth 1996). This 

optimism stems from several recent advancements in climate modeling, such as 

improvements in GCMs that have allowed realistic reproduction of observed global 

climate (Roads et al. 1999), adaptation of new forecasting strategies, demonstration of the 

links between El Niño/Southern Oscillation (ENSO) and short-term climate, and the 

ability to forecast ENSO 12-18 months in advance. Barnett et al. (1994) showed that with 

the above improvements, GCMs could be used successfully to predict air temperature, 

precipitation, and solar radiation at extended lead times over many parts of the world. 

Research as well as operational agencies that currently produce and disseminate climate 

forecasts includes the NOAA’s National Center for Environmental Prediction, Columbia 

University’s International Research Institute, the Scripps Institute of Oceanography’s 

Experimental Climate Prediction Center, and others. 

 

Satellite remote sensing: A number of studies over the past two decades have shown the 

utility of satellite data for monitoring vegetation (type, density, and production), extent of 

flood damage, wildland fire detection, and monitoring snow and drought conditions. 

However, many of the products generated from satellite data have been experimental, and 

did not have a wide distribution among natural resource managers. Over the past five 

years, through NASA’s EOS program, there have been substantial improvements in the 
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way satellite data is acquired, processed, converted to products, and delivered (Table 1). 

For example, weekly maps of leaf area index (LAI, area of leaves per unit ground area) 

and vegetation indices, key inputs for many ecosystem models, are being generated and 

distributed from the NASA/MODIS sensor. A number of other key land products such as 

NPP, fire occurrence, snow cover, and surface temperature are available globally at 1-km 

resolution every 8 days (Justice et al 1998; Myneni et al. 2002). Without this near-

realtime observing capacity, systems such as TOPS would never have materialized. 

 

Integrated modeling: Numerous studies over the past two decades addressed the logical 

steps for modeling land surface processes over various spatial scales, by integrating 

ecosystem models with satellite, climate data, and other ancillary information (Waring 

and Running 1998).  One such attempt that many of us have been part of was the 

development of the Regional Hydro-Ecological Simulation System (RHESSys, Band et 

al. 1993; Nemani et al. 1993; Tague and Band 2004). RHESSys has been used in various 

studies for estimating soil moisture, stream flows, snow pack, and primary production 

(Waring and Running 1998). Much of the work using RHESSys has been retrospective, 

using past climate and satellite data, mainly to evaluate various issues related to the 

parameterization of key variables, scaling and determining the suitability of RHESSys 

outputs for use by resource managers (Waring and Running 1998). While this type of 

retrospective analysis is useful for long-term management decisions, only a real-time 

analysis can provide data necessary for dynamic decision making such as the assessment 

of fire risk. Our work has focused on the development of the Terrestrial Observation and 

Prediction System (TOPS) to provide this capability for real-time analysis, which is 

essential for forecasting ecological conditions desired by decision makers. 

 

The Terrestrial Observation and Prediction System (TOPS) 

 

 TOPS is a data and modeling software system designed to seamlessly integrate 

data from satellite, aircraft, and ground sensors with weather/climate models and 

application models to expeditiously produce operational nowcasts and forecasts of 

ecological conditions (Figure 1).  TOPS provides reliable data on current and predicted 
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ecosystem conditions through automation of the data retrieval, pre-processing, 

integration, and modeling steps, allowing TOPS data products to be used in an 

operational setting for a range of applications.    

 

Implementation of TOPS over a region consists of first developing the 

parameterization scheme for the area of interest.  Parameterization inputs include data on 

soils, topography, and satellite derived vegetation variables (land cover and LAI). 

Observational weather data, gridded from point data or downscaled from previously 

gridded data to the appropriate resolution, are then used to run a land surface model, such 

as BIOME-BGC (Waring and Running 1998; White et al. 2000). Finally, weather and 

climate forecasts are brought into the system as gridded fields and downscaled to the 

appropriate resolution to drive the land surface model and generate predictions of future 

ecosystem states. 

  

Given the diversity of data sources, formats, and spatio-temporal resolutions, 

system automation is critical for the reliable delivery of data products for use in 

operational decision-making. TOPS has been engineered to automatically ingest various 

data fields required for model simulations (Figure 2). Ingested data go through a number 

of preprocessing filters in which each parameter is mapped to a list of attributes (e.g., 

source, resolution, and quality). This results in each data field being self-describing to 

TOPS component models such that any number of land surface models can be run 

without extensive manual interfacing. Similarly, the model outputs also pass through a 

specification interface, facilitating post-processing so that model outputs can be presented 

as actionable information, as opposed to just another stream of data. TOPS derives its 

flexibility and automation capability from two key software components: JDAF (Java 

Distributed Application Framework) and the ImageBot planner. 

 

JDAF and IMAGEbot 
 
The TOPS software is implemented using a flexible framework that enables fast and easy 

integration of new models and data streams into an automated system. The core 

components of this framework are JDAF (Java Distributed Application Framework) and 
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IMAGEbot. JDAF consists of a large set of data processing and image analysis algorithms 

that are deployed to pre-process and post-process inputs and outputs of the TOPS 

ecosystem models. When we want to process new data with our existing models, we re-

use the JDAF algorithms to create intermediate datasets that adhere to the model’s input 

specifications so that we can execute our models without having to alter the science 

implementation.Because the pre-processing itself can be a very complex process, 

involving for example data acquisition, mosaicking, reprojection, subsetting, scaling etc.  

We have developed a planner-based agent (IMAGEbot), which automatically generates 

the sequence of processing steps needed to perform the appropriate data transformations. 

In other words, JDAF provides all the processing components of the system and 

IMAGEbot determines how they fit together to achieve the desired goal, creates a plan, 

and executes it. This gives a great flexibility to the TOPS software and speeds-up 

significantly the integration of both datasets and models into new applications. 

Additionally, JDAF provides interface to the database system and to web services 

capabilities for seamless access to both data and services provided by TOPS. 
 

As currently deployed within TOPS, JDAF and ImageBot perform two dynamic 

functions critical for the real-time monitoring, modeling and forecasting of ecosystem 

conditions: gridding of weather observations to create continuous fields of climatic 

parameters, and acquisition and processing of satellite data for initializing or verifying 

the models.   

         

Climate Gridding 

 

To produce gridded climate fields, the user specifies a geographic area of interest 

and the spatial resolution for the gridded fields. The ImageBot planner uses these 

specifications to create a data processing plan comprised of a series of requirements and 

corresponding actions. For example, ImageBot will identify the acquisition of 

topographic data as a requirement, evaluate the possible sources for this data from the 

data library, identify the required resolution, and create the set of actions required to 

obtain the data at the appropriate resolution. These actions are then passed to JDAF, 
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which fetches the data from the source, and reformats and reprojects the data to meet the 

user-specified requirements. Similarly, for meteorological data, ImageBot produces a list 

of weather networks available for the region, a list of variables available from each 

network, and the frequency of observations available from the network. From this 

information and the user-defined set of constraints, ImageBot again formulates a series of 

actions specifying which networks and what variables need to be retrieved and input to 

the database. After receiving these instructions, JDAF fetches the necessary data, checks 

for consistency against historical averages, fills-in missing values from additional 

sources, flags missing values, and finally interfaces these observations with the Surface 

Observation and Gridding System (SOGS, Jolly et al. 2004, Figure 3), a component layer 

within TOPS. SOGS is an operational climate-gridding system, and an improvement 

upon DAYMET (Thornton et al. 1997), that uses maximum, minimum, and dewpoint 

temperatures, in addition to rainfall, to create spatially continuous surfaces for air 

temperatures (e.g. Figure 4a), vapor pressure deficits, and incident radiation. The cross-

validation statistics returned from SOGS allow ImageBot to decide if the user-specified 

requirements for accuracy have been achieved, or if alternative gridding methods need to 

be found.  

 

 

Acquiring and Processing of Satellite Data  

 

TOPS has access to a number of satellite data sets (Table 1), produced and 

processed by either NASA or NOAA. This access involves machine-to-machine, web-

based ordering, and FTP pushes for routine data sets such as those from the NOAA 

Geostationary Operational Environmental Satellites (GOES). Similarly to the climate 

gridding process described in the previous section, ImageBot defines a set of actions 

pertaining to satellite data and products based on user-defined constraints and 

requirements. The requirements in this case may include, for example, obtaining LAI and 

snow cover data with the following constraints: a minimum resolution of 1km, a weekly 

time interval, and a specification to obtain the highest possible quality data available. 

From the data library, ImageBot creates a list of sites that provide LAI. ImageBot sends a 
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command to JDAF to fetch all of the metadata files relating to the LAI product to be 

evaluated and screened for quality. A list of ‘tiles’ (the 1200x1200km area used in 

MODIS processing) covering the geographic area of interest and meeting the quality 

criteria is prepared. A request is sent to the archival site (for example, the USGS Eros 

Data Center). When the order is ready for download, JDAF collects the order and updates 

the internal database. JDAF then initiates a series of actions on the tile data available 

locally, including the creation of mosaics, filling-in of missing values, regridding, and 

reprojection. An example of LAI output from this procedure is shown in Figure 4b. 

 

In many cases, data available from the Distributed Active Archive Centers 

(DAACs) may be 2-8 days old. While this may not pose a significant problem for 

geophysical fields such as LAI that vary slowly, snow cover can change dramatically in a 

week. To deal with these situations, TOPS has the ability to ingest and use MODIS data 

from Direct Broadcast readouts available throughout the United States.  

 

Interfacing new models in TOPS 

 

Interfacing the pre-processed climate and satellite data with models is the next 

step in producing TOPS nowcasts and forecasts. In order to facilitate the integration of 

new models, TOPS  provides a system for describing new models in terms of their inputs 

and their outputs. These descriptions include specifications for the format, resolution, 

variables, and temporal and spatial extent of model parameters. These descriptions are 

then embedded in the domain descriptions of the model using the DPADL language 

(Golden 2003). While this method still lacks robustness and is not fully automated, it 

enables TOPS to integrate new models into the system faster than the manual integration 

that would otherwise be required. To improve the automation of this process, we are 

currently designing an applications programming interface for model integration.  
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TOPS Nowcasts  

 

On a daily basis, TOPS uses the technologies described above to produce a set of 

30 variables including gridded climate, satellite-measured and modeled fields. For the 

current TOPS implementation for the State of California at 1km and the continental U.S 

at 8km, the data products that are most widely requested are gridded climatic data 

consisting of daily max/min temperatures, vapor pressure deficits, rainfall, and incident 

shortwave radiation (Figure 4a).  Satellite products include daily GOES-based infra-red 

and visible reflectances and 8-day MODIS (Figure 4b) and other sensor products (Table 

1). One key difference between TOPS satellite products and products from various 

DAACs is that TOPS pre-processes the data for immediate use. In addition to the 

meteorological data, TOPS provides ecosystem nowcasts for California including maps 

of soil moisture, snow cover and depth, gross and net primary production (e.g. Figure 4c), 

growing season dynamics (leaf on and leaf off), evapotranspiration, and streamflow.   

 

TOPS Forecasts 

 

TOPS currently produces two types of ecological forecasts: 1) model-based, 

where the model is run into the future, and 2) those based on historical associations. 

Model-based forecasts are either short-term (3-7 days), as in the case of vineyard 

irrigation, or experimental long-term (3 months) based on outputs from GCMs. In both 

cases, land surface states are continuously updated using satellite and ground-based 

observations. Forecasts based on historical associations include those derived from 

weather-phenology and weather-fire risk. For both applications, we developed empirical 

models that provided reasonable predictions of the parameter of interest, i.e., the start and 

end of the growing season, and relative fire risk. In each, we used a combination of 

climate data and spatially continuous historical satellite data to develop the predictive 

models (https://ecocast.arc.nasa.gov).  

 

Verification & Validation 
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TOPS outputs are continuously compared against observed data to assess spatio-

temporal biases and general model performance. In the case of snow pack dynamics, for 

example (Figure 5), we perform a three-way comparison among model-,observation-, and 

satellite-derived fields of snow cover expansion and contraction (r=0.91). Carbon-related 

variables such as gross and net primary production fields are tested against FLUXNET-

derived data at selected locations representing a variety of landcover/climate 

combinations (r=0.83). Similarly, the SCAN network of soil moisture, USGS streamflow, 

and SNOTEL provide valuable data for verifying the hydrology predictions from TOPS.  

 

TOPS Applications 

 

TOPS Helping the California Wine Industry 

 

The impetus for developing TOPS came from NASA’s research in Napa Valley, 

California, which explored the relationship between climate and wine quality and the 

application of remote sensing and modeling in vineyard management. Analysis of long-

term climate records and wine ratings showed that interannual variability in climate has a 

strong impact on the yearly $30 billion California wine industry. Warmer SSTs observed 

from satellite along the California coast were found to help wine quality by modulating 

humidity, reducing frost frequency, and lengthening the growing season (Nemani et al. 

2001). Because changes in regional SSTs persist for 6 to 12 months, predicting vintage 

quantity and quality from previous winter conditions appears to be possible (Nemani et 

al., 2001). 

 TOPS also helps vintners during the growing season as a real-time vineyard 

management tool. For example, satellite remote sensing data during the early growing 

season helps vineyard managers to locate areas for pruning so that an optimum canopy 

density is maintained. Similarly, LAI derived from satellite data is used in ecosystem 

process models to compute water use and irrigation requirements to maintain vines at 

given water stress levels. Research suggests that vines need to be maintained at moderate 

water stress to maximize fruit quality (Johnson et al., 2003). By integrating leaf area, 

soils data, daily weather, and weekly weather forecasts, TOPS can estimate spatially 



 14

varying water requirements within the vineyard so that managers can adjust water 

delivery from irrigation systems (Figure 6a). A number of Napa valley vintners presently 

participate in our experimental irrigation forecast program, helping us verify the utility of 

the forecasts, the packaging and delivery of information, and assess the economic value 

of the forecasts. Satellite imagery at the end of the growing season also helps growers in 

delineating regions of similar grape maturity and quality so that differential harvesting 

can be employed to optimize wine blending and quality (Johnson et al. 2003). 

 

TOPS monitors global ecosystems 

 

NPP, the net result of photosynthesis and respiration by plants, forms the basis for 

life on earth, and provides food, fiber and shelter for humanity. Continuous monitoring of 

NPP therefore is in our best interest (Running et al. 2004) as the biosphere responds to a 

variety of pressures from changing climate, atmospheric chemistry, agricultural and land 

use practices. Spatially continuous assessments of global NPP have been possible only in 

the past two decades with the availability of NOAA/AVHRR data. One such assessment 

spanning 1982 to 1999 showed significant increases in global NPP, attributed to a variety 

of changes in climatic conditions (Nemani et al. 2003). While good news, the underlying 

message of this study is that interannual and decadal changes in NPP can be dramatic and 

require regular monitoring (Milesi et al. 2005). Using TOPS, we extended our historical 

analysis of global NPP into global NPP nowcasts (Figure 6b). Every 8 days, TOPS brings 

together the latest MODIS data on land cover, LAI/FPAR, climate data from NCEP, 

regrids the data to 0.5 degree resolution, estimates NPP, and expresses the output as 

weekly/monthly anomalies from long-term normals. Because SSTs have a strong 

association with land surface climate (e.g. ENSO), we also produce maps of global SST 

anomalies. Animations of these anomalies provide information regarding the location, 

magnitude, and persistence of anomalies that need further exploration using high-

resolution data sets. When a persistent anomaly is detected, TOPS can be tasked to 

perform a higher resolution model run for that region using the best possible data sets. An 

extended analysis of the anomaly helps us to understand whether the estimated NPP 

anomaly is related to changes in climate or land use (Hashimoto et al. 2004).  
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On-going applications of TOPS include nowcasting and forecasting of snow 

dynamics in the Columbia River Basin (Northwestern U.S.), mapping fire risk across the 

continental U.S., mapping NPP at 250m in protected areas such as U.S. National Parks, 

carbon and water management in urban ecosystems (Milesi et al.,2005) , and monitoring 

and forecasting mosquito abundance and outbreaks of West Nile virus in California. 

TOPS products are available in WMS format so these data can be accessed and visualized 

using NASA’s WorldWind (http://worldwind.arc.nasa.gov) software system designed 

explicitly for educational purposes.  

  

 

 

Summary 

 

In the past, ecological forecasting has been largely anecdotal. Its transformation 

into a rigorous, scientific endeavor is now possible through the observing capacity of 

operational satellites, the speed and flexibility of the internet, the use of high-

performance computing for complex modeling of living systems, and mining of large 

quantities of data in search of relations that could offer potential predictability. Unlike the 

case of weather and climate forecasting, EF can be as diverse as the number of weather-

influenced phenomena. We hope our efforts at EF can provide the necessary guidance for 

future applications, since the basic infrastructure needed to enable ecological forecasts 

appears to be similar across different domains. Our experience with EF has been that 

producing the forecasts may be the easy part, convincing users and conveying the 

uncertainty associated with the forecasts has been a challenge. Much work is needed 

along these lines to realize the full potential of ecological forecasting.
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Figure Captions: 
 
Figure 1. The Terrestrial Observation and Prediction System (TOPS) integrates a wide 
variety of data sources at various space and time resolutions to produce spatially and 
temporally consistent input data fields, upon which ecosystem models operate to produce 
ecological nowcasts and forecasts needed by natural resource managers. 
 
Figure 2:  TOPS data processing flowchart showing three key modules that perform data 
acquisition and pre-processing, data and model integration and decision support through 
analysis of model inputs and outputs. Application front-ends, predictive models, and data 
mining algorithms are modular and can be easily swapped out as needed. The modular 
architecture also allows for the concurrent use of multiple ecosystem models to generate 
forecasts for different parameters. 
  
Figure 3: Flow diagram of the SOGS. Three main components that comprise the system 
are: data retrieval and storage, interpolation and output handling. Data retrieval is 
configured to automatically retrieve the most recent data available and insert those data 
into the SQL database. Interpolation methods are modular and allow maximum flexibility 
in implementing new routines as they become available. Outputs are generated on the 
prediction grid that is determined by the latitude, longitude, elevation and mask layers. 
Another key feature of the SOGS implementation is scenario generation where long-term 
normal station data can be perturbed according to climate model forecasts. Weather data 
from over 6000 stations distributed globally is ingested into TOPS database where it is 
gridded to a variety of resolutions, globally at 0.5 degree, continental U.S at 8km and at 
1km over California. 
 
Figure 4: Examples of TOPS nowcasts. a) Patterns of maximum air temperature over the 
conterminous U.S., produced using over 1400 stations on April, 27, 2004. b) MODIS-
derived leaf area index after pre-processing through TOPS, and c) Model estimated gross 
primary production, the amount of photosynthate accumulated on April 27, 2004 over the 
conterminous U.S. 
 
Figure 5: Testing TOPS products against satellite and network observations: a) TOPS 
snow cover against MODIS-derived snow cover, b) TOPS Evapotranspiration against 
FLUXNET observations at Harvard Forest, and c) TOPS Gross Primary Production 
shown against FLUXNET observations at a number of sites across the U.S.  
 
Figure 6: a) Application of TOPS over Napa valley vineyards showing the recommended 
irrigation amounts to keep the vines at a stress level of –12bars for the week of 
September 7, 2004. b) A global application of TOPS for monitoring and mapping net 
primary production anomalies over land and sea surface temperature anomalies over 
global oceans. NPP and SST anomalies for May 2005 are based on monthly means from 
1981-2000. 



 20

Table 1: Data sources, derived products and their usage within TOPS 
Data Source Products Usage 
Satellite data   
MODIS – TERRA/AQUA 
(250/500/1000m) 

Surface reflectances Vegetation monitoring 

 Land surface Temperature Drought/Fire/Snow 
 Leaf area index Vegetation monitoring 
 Snow cover Hydrology 
 Vegetation indices Vegetation monitoring 
 Fire Burnt area/recovery 
AVHRR (1000m) Vegetation index Vegetation monitoring 
 Land surface temperature Drought/Fire/snow 
AMSR-E (25km) Brightness temperature 

Surface soil moisture 
Hydrology monitoring 

Thematic Mapper (30m) Reflectances, land cover maps Vegetation monitoring 
SSM/I (25km) Brightness temperatures Hydrology monitoring 
ASTER (10-20m) Reflectances, land surface temperature Vegetation monitoring 
SRTM (30-50m) Topography Drainage, climate mapping 
   
Ground observations   
NWS (hourly) Weather Model inputs 
SNOTEL (daily) Weather, snow Model inputs, validation 
RAWS (hourly) Weather Model inputs 
CIMMIS (hourly) Weather, ETo Model inputs 
FLUXNET (fortnightly) Weather, ET, GPP Inputs, validation 
SCAN (daily) Soil moisture Validation 
USGS –Gauges (daily) Streamflow Validation 
   
Model results   
NCEP (daily) Global weather/climate forecasts Model inputs 
DAO (daily) Global weather Model inputs 
ECPC (weekly) Climate forecasts Model inputs 
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Acronyms 
 
AMSR-E Advanced Microwave Scanning Radiometer-Earth 

Observing System 
ASTER Advanced Spaceborne Thermal Emission and Reflection 

Radiometer 
AVHRR Advanced Very High Resolution Radiometer 
BIOME-BGC Biome-biogeochemistry 
CIMIS California Irrigation Management Information System 
DAAC Distributed Active Archive Center 
DAO Data Assimilation Office 
ECPC Experimental Climate Prediction Center 
EF Ecological Forecasting 
ENSO El Niño–Southern Oscillation 
ET Evapotranspiration 
ETo Reference Evapotranspiration 
FLUXNET Network of eddy covariance towers 
FPAR Fraction of Photosynthetic Active Radiation 
GCM General Circulation Model 
GOES Geostationary Operational Environmental Satellites 
GPP Gross Primary Production 
ImageBot heuristic-search constraint-based planner 
JDAF Java-based Distributed Application Framework 

(executing plans and for interfacing with DAACs) 
DAPDL Data Processing Action Description Language 
WMS Web Map Server 
LAI  
MODIS MODerate resolution Imaging Spectro-radiometer 
NCEP National Center for Environmental Prediction 
NOAA National Oceanic and Atmospheric Administration 
NPP Net Primary Production 
NWS National Weather Service 
RAWS Remote Automated Weather Stations 
RHESSys Regional Hydro-Ecological Simulation System 
SCAN Soil Climate Analysis Network 
SNOTEL SNOWpack TELemetry network 
SOGS Surface Observation and Gridding System 
SRTM Shuttle Radar Topography Mission 
SSM/I Special Sensor Microwave Imager 
SST Sea surface temperature 
TOPS Terrestrial Observation and Prediction System 
USFS United States Forest Service 
USGS United States Geological Survey 
XML Extensible Markup Language 
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4a)  
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5a)  
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6a)  

6b)
 

Mapping changes in global net primary production
near real-time depiction of the droughts in the Amazon and Horn of Africa, May 2005 


