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Summary:  We used mapped and modeled land cover change in large watersheds of the 

eastern United States to explore the impacts of urbanization of hydrologic dynamics 

(runoff) and vegetation carbon uptake (gross productivity).  We used the Terrestrial 

Observation and Predictions System (TOPS), a state of the art modeling framework for 

assimilating satellite data observations with ecosystem and hydrology models. We 

incorporated the future land use predictions into TOPS to establish a framework for 

simulating the influence of potential adaptation actions associated with land use.  Our 

overriding hypothesis is that any of a number of land use practices can mitigate additional 

climate heating by increasing carbon sequestration via changes in primary productivity 

and hydrologic dynamics associated with energy cycle feedbacks to climate. 
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I.  INTRODUCTION 

 

Over the coming century, changes in climate and land use and land cover (LULC) have 

the potential to create major changes in land surface temperature, watershed runoff, and 

ecosystem productivity throughout much of the world, including the United States.  The 

climate change scenarios in the Intergovernmental Panel on Climate Change (IPCC) 

Fourth Assessment Report (AR4) forecast warming of 3.5-12° C for the eastern U.S. by 

2100. Work conducted to date by project team members and other research teams 

forecasts a nearly 50% increase in urban land cover classes and associated impervious 

surface cover over the next few decades across substantial portions of the U.S., 

particularly in the southwestern and eastern U.S.  In combination, climate change and 

land use change are likely to create a series of cascading impacts on ecosystems, 

including changes in productivity, disturbance and hydrological properties.  

 

There are a number of potential best management practices (BMPs) for land use planning 

and design that could be implemented to mitigate impacts resulting from changes in 

climate and LULC.  These BMPs include urban reforestation, restoration of abandoned 

lands and riparian corridors, green roofing for commercial buildings, low impact 

development (LID) techniques for residential housing, and replacement of asphalt and 

concrete with permeable surfaces.  All of these BMPs have the net effect of reducing 

impervious surface area (ISA), modifying albedo, mitigating the urban heat island effect, 

and increasing productivity and carbon sequestration in biomass within more urbanized 

and exurban developed areas.  What is currently lacking, however, are broad-extent, 

regional simulations that demonstrate the potential cumulative benefits of coordinated 

state- and region-wide implementation of BMPs, particularly given the planned regional 

focus on the next generation (AR5) IPCC scenario development.  Here we report the 

results of an initial modeling experiment to evaluate the impacts of projected land use 

change on ecosystem conditions across a 216,800 km
2
 area encompassing the 

Chesapeake Bay and Delaware River watersheds (see Figure 1), and discuss this in the 

context of BMPs.   

 

 

II.  METHODS 

 

The modeling analysis was conducted using the Terrestrial Observation and Prediction 

System (TOPS), a modeling framework that automatically integrates and preprocesses 

Earth Observation Satellite data fields so that land surface models can be run in near real-

time or used to generate short and long-term forecasts (Nemani et al., 2007, 2008).  

Simulations to evaluate the impact of land use change on runoff and gross primary 

productivity (GPP) were conducted using BIOME-BGC (Thornton et al., 1997, 2005), 

which has been integrated with TOPS as a component model.  In this modeling 

experiment, BIOME-BGC was used to estimate various water (evaporation, transpiration, 

stream flows, and soil water), carbon (net photosynthesis, plant growth) and nutrient flux 

(uptake and mineralization) processes.  BIOME-BGC requires as inputs spatially 

continuous data layers to describe the land cover, soil texture and depth, daily 

meteorology, and elevation across the land surface.  BIOME-BGC can also use satellite-



derived estimates of leaf area index (LAI) to parameterize equations for photosynthesis 

and plant growth. 

 

1. Land Cover 

Land cover data for the baseline runs (2000-2003) were derived from the National Land 

Cover Database (Homer et al., 2004).  The 2001 NLCD 30m data set for the Chesapeake 

watershed was resampled to a spatial resolution of 250m using a majority vote algorithm.  

Land cover data for the future scenario used ISA forecasts from SERGoM for the year 

2030 (Theobald et al. 2009), and used an ISA threshold of 10% to derive an urban mask 

for 2030 that was superimposed over the NLCD 2001 data.  Figure 1 provides a 

comparison of the extent of urban land cover circa 2000 versus the increase in urban land 

cover projected to occur by 2030 (SERGoM). 

 

BIOME-BGC uses biome classifications derived from the International Geosphere-

Biosphere Programme (IGBP) land cover classification scheme (Loveland and Belward 

1997), which required us to crosswalk the NLCD 2001 land cover classes to the 

corresponding IGBP classes.  Our current implementation of BIOME-BGC does not 

include a biome parameterization for urban environments.  Future work will address this 

limitation, but for this initial experiment we simulated urban environments using the 

„Barren‟ land cover class, and made corresponding adjustments to the soil texture and 

rock depth layers, as described below. To simulate the effect of impervious surface area 

(ISA) in urban environments on runoff and productivity, we changed the land cover class 

from urban to barren for pixels with ISA > 10% in the 2000 and 2030 land cover data 

layers prior to crosswalking the NLCD land cover to the corresponding IGBP class. 

 

2. Soils and Topography 

Data on soil texture and soil depth was derived from the U.S. STATSGO2 database 

(http://soils.usda.gov/survey/geography/statsgo/).  TOPS includes complete U.S. soil 

texture and rock depth grids at a spatial resolution of 1km, and data for this analysis were 

resampled to a spatial resolution of 250m to match the resolution of the other data layers.  

In addition, as an initial approximation of ISA in urban environments, soil texture layers 

were set to 98% clay and rock depth was adjusted to 0.10m for pixels corresponding to 

urban land cover classes or ISA > 10%.  Elevation data were resampled from the U.S. 

30m national elevation data set (NED) (http://ned.usgs.gov/) to a resolution of 250m by 

taking the average elevation of all pixels within each 250m pixel.      

 

3. Meteorology 

Daily 250m resolution meteorological surfaces were generated for the region from 

January 2000 through December 2003 using the Surface Observation and Gridding 

System (Jolly et al., 2005), a component of TOPS.  SOGS automatically retrieves and 

stores observations from meteorological station networks and applies a library of 

interpolation algorithms to produce spatially continuous meteorological surfaces 

including surface air temperature (maximum, minimum, and average), precipitation, 

vapor pressure deficit, and shortwave radiation.  For the grids for the Chesapeake region, 

we applied gridding algorithms based on DAYMET that follow Thornton et al. (1997) to 

produce the required meteorological inputs for BIOME-BGC.  This initial modeling 



experiment only evaluated impacts of project land use change.  As such, the daily climate 

data for 2000-2003 was used for both the baseline (2000) and future (2030) scenarios.  

Future work will apply climate downscaling techniques to examine the combined impacts 

of climate and land use change.   

 

4. Leaf Area Index 

TOPS is capable of using simulated seasonal growth patterns, climatologies derived from 

historic satellite observations, or direct satellite observations of the land surface to 

estimate leaf area index and parameterize vegetation conditions within the model on a 

daily timestep to track the observed seasonal patterns in vegetation growth.  For this 

experiment, we used applied the MODIS MOD15A2 (Myneni et al., 2000) fallback 

algorithms for calculating leaf area index (LAI) from the MODIS MOD13Q1 250m 

NDVI data from March 2000 to December 31, 2003.  Daily LAI estimates were 

interpolated from the 8-day MODIS composites using a spline function.  As with the 

climate data, the timeseries of LAI estimates from 2000-2003 were used for both the 

baseline (2000) and future (2030) scenarios.   

 

5. Streamflow Data 

Daily streamflow data from 2000-2003 at the UGSS Streamflow Gauge at Trenton NJ 

(ID# 01463500, Latitude 40°13'18", Longitude 74°46'41, Drainage Area 6,780 square 

miles) were retrieved from the USGS National Water Information System 

(http://waterdata.usgs.gov/nwis) for use in evaluating estimates of watershed outflow 

from TOPS for the region.     

 

 

III.  RESULTS 

 

Daily total watershed outflow for the region was calculated and compared against 

observed watershed outflow at the USGS streamflow gauge at Trenton, New Jersey 

(Figures 2a & 2b).  Since BIOME-BGC does not include capabilities for spatially explicit 

hydrologic routing, a running 11-day average was used to calculate outflow for 

comparison to the observed streamflow.  The running average was used to correct for the 

time required for water to be transported throughout the watershed. Also, because the 

drainage area covered by the Trenton gauge is about 9% of the total area of the model 

experiment, a corresponding weighting factor is applied to the model simulated runoff. In 

spite of the above stated model limitations in hydrological routing, Figure 2 indicates that 

the simulated runoff is consistent with the observations in both daily variability and 

accumulated magnitude. Indeed, the difference of the accumulated outflow is less than 

4% during the four-year period. 

 

Projected runoff patterns for 2030 follow the same general pattern as the 2000 baseline 

scenario, but with increases in runoff volume per storm event of as much as 15%.  Figure 

3 provides a comparison of projected average daily runoff for the baseline and future land 

cover scenarios, and Figure 4 summarizes the difference in average daily outflow from 

the two simulations. The expansion of ISA in the 2030 scenario clearly leads to an 

significant increase in instantaneous runoff on rainy days, as indicated by the positive 



spikes in Figure 4.  On the other hand, the expansion of ISA also decreases the soil-water 

holding capacity and, as a result, runoff after the storms in the 2030 scenario decreases 

more rapidly than in the 2000 scenario, as indicated by the negative spikes in Figure 4. 

This increase in hydrologic “flashiness” is characteristic of increasing impervious cover 

within watersheds. Based on this initial modeling experiment, the predicted change in 

cumulative annual runoff from the watershed was approximately 1%, with a cumulative 

average increase in runoff of 1.5 billion m
3
–H2O/yr above the baseline total outflow 

volume of 150 billion m
3
–H2O/yr (Figure 5a & 5b).  Consistent with expectations, this 

increase in runoff volume is geographically concentrated around regions forecasted to 

have substantial increases in ISA (Figure 6). 

 

Daily average estimated GPP for the baseline and future scenarios are summarized in 

Figure 7a.  Not surprisingly, the intra-annual patterns in productivity track one another 

closely as a result of using the 2000-2003 climate data for both the baseline and future 

modeling scenarios.  Because the region is dominated by deciduous temperate forest, 

changes in GPP were most significant during the summer months (Figure 7b).  Projected 

decreases in GPP in this modeling experiment were estimated at 14 million kg-C per year 

(Figure 8b, or approximately 5% of the total annual estimated GPP of 290 million kg-C 

for the region (Figure 8a).  These changes were again concentrated in areas forecasted to 

undergo substantial urbanization by 2030 (Figure 9).    

   

 

IV. DISCUSSION 

 

Despite the relatively simplified parameterization of urban land cover and the lack of 

explicit hydrologic routing in BIOME-BGC, estimated watershed outflow from TOPS 

replicated observed streamflow volumes with reasonably good accuracy.  Use of an 11-

day moving average to calculate runoff volumes from TOPS dampened the magnitude of 

the peaks in runoff, but improved the overall match of predicted versus observed 

streamflow for 2000-2003.  More rigorous parameterization of urban biomes within 

BIOME-BGC will likely further improve agreement between estimated and observed 

runoff.  Since the primary goal of this effort was to quantify the cumulative magnitude of 

changes in GPP and watershed outflow, obtaining a perfect match between predicted and 

observed runoff was not considered essential. 

 

While a number of studies have examined the effects of increasing ISA on water quality 

(see Goetz et al. 2008 for a recent synthetic analysis and Schueler et al. 2009 for a recent 

review), there have been relatively few studies that have examined the relationship 

between increasing ISA and surface runoff, and only one previous study on this topic 

could be located for the northeastern U.S.  Carlson (2004) applied the SLEUTH model to 

forecast increases in ISA to 2025 in the Spring Creek watershed in Pennsylvania, and 

reported an increase in surface runoff and peak flow of a few percent (with the magnitude 

of the change varying slightly according to the method used to calculate the impact of 

ISA on runoff).  This result is consistent with the predicted 1% increase in cumulative 

runoff and up to 15% increase in peak flow from our modeling experiment.  A 

comparative study of different watersheds, conducted in the vicinity of Atlanta GA by 



Rose & Peters (2001), also reported that observed peak flows were 30-100% greater in 

highly urbanized versus less urbanized watersheds.  While the study did not report an 

overall increase in runoff or change in the runoff coefficients (runoff as a fractional 

percentage of precipitation), they did report that the recession period for the urbanized 

watershed was 1-2 days less for the other streams evaluated, which is consistent with the 

results of our study.   

 

Predicted changes in GPP in this modeling experiment are likely to be somewhat 

overestimated because use of a „Barren‟ biome class to represent urban environments, 

while suitable for representing ISA within urban environments, fails to capture 

productivity associated with urban landscaping and small parks. The estimate of a 5% 

decrease of the baseline total GPP in 2000, however, provides an upper bound for 

potential loss of productivity as a result of increasing urbanization in the Chesapeake and 

Delaware watersheds through 2030.     

 

Future work will follow the approach used by Milesi et al. (2005) to develop a modified 

savannah biome parameterization to represent urban environments, and will include 

multiple parameterizations of urban environments to further evaluate the potential for 

various best management practices to mitigate impacts on GPP (e.g., urban reforestation, 

green roofing, smart growth, etc).  Use of additional biome parameterizations for urban 

environments should increase the accuracy of forecasted impacts to GPP and watershed 

outflow.  In addition, while this initial experiment focused on the potential impacts of 

land use change on watershed outflow and productivity, future work will also apply the 

downscaled climate scenarios described previously to evaluate the combined impact of 

climate and land use change on the region.   

 

 

V. CONCLUSION 

 

We conducted a modeling experiment to evaluate the potential impact of land use change 

and increasing urbanization on watershed outflow and gross primary productivity, and to 

demonstrate the potential utility of TOPS for evaluating the combined impacts of climate 

and land use change at regional to national scales.  Results from this modeling 

experiment indicate the potential for significant impacts to occur as a result of land use 

change and increased impervious surface area, with increases in total average watershed 

runoff of approximately 1%, and potential losses of GPP of as much as 5% through 2030, 

with increasing impacts expected beyond 2030.  Future work will examine the additional 

potential impacts resulting from the combination of land use and climate change, and the 

extent to which different best management practices could mitigate these impacts. 
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Figure 1:  Increase in urban land cover (shown in red) from 2000 to 2030.  The 2000 map 

is derived from the NLCD 2001 data (Homer et al. 2004), and the 2030 map is derived 

from SERGoM estimates using a threshold for impervious surface area of 10% to define 

urban areas (Theobald et al. 2009).   
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Figure 2:  Comparison of predicted daily (a) and cumulative (b) runoff from TOPS 

against observed runoff from the USGS stream gauge at Trenton for 2000-2003.   

 

 



 

 

 

 
 

Figure 3:  Average daily runoff (in cubic meters per day) over a four year period 

calculated using daily meteorological surfaces from 2000-2003 and the baseline land 

cover from 2000 (blue line) and forecasted land cover from 2030 (red line). 

 

 



 
 

Figure 4:  Predicted change in average daily runoff over the four year simulation period 

expressed as the difference between the forecast (2030) and baseline (2000) scenarios. 
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Figure 5: Forecasted average cumulative runoff over the four year simulation periods.  

Total cumulative runoff for both the baseline (2000) and forecast (2030) scenarios is 

shown in (a), and the difference between the baseline and forecast scenarios is shown in 

(b). 



 

 

 

Figure 6:  The average annual total runoff for the baseline (2000) and forecast (2030) 

scenarios, and the projected increase in average annual runoff, expressed in depth of 

water in mm. 

 

  

 

Baseline (2000) Forecast (2030) Difference 



 

(a)  

 

 

(b)  

 

Figure 7:  Forecasted average daily GPP over the four year simulation periods.  Average 

total daily GPP for the study region for both the baseline (2000) and forecast (2030) 

scenarios is shown in (a), and the difference between the baseline and forecast scenarios 

is shown in (b).  Units are expressed in kg of carbon per day. 
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Figure 8:  Forecasted average cumulative GPP over the four year simulation periods.  

Average cumulative GPP for the study region for both the baseline (2000) and forecast 

(2030) scenarios is shown in (a), and the difference between the baseline and forecast 

scenarios is shown in (b).  Units are expressed in kg of carbon. 



 

 

Figure 9:  The average annual total GPP for the baseline (2000) and forecast (2030) 

scenarios, and the projected decrease in average annual GPP, expressed in kg of carbon. 
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