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Abstract—Regression problems on massive data sets are the prediction is equally important. A simple model such as
ubiquitous in many application domains including the Internet,  |inear regression does not provide us with that information
earth and space sciences, and finances. In many cases, regres Also, models like linear regression, in spite of being easy
sion algorithms such as linear regression or neural network " . . " .
attempt to fit the target variable as a function of the input to f't_ and_be'_ng highly Scalable_’ fail to capture no_nl'n_ear
variables without regard to the underlying joint distribut ion relationships in the data. Gaussian Process regressiomis o
of the variables. As a result, these global models are not regression model that can capture nonlinear relationstngs
sensitive to variations in the local structure of the input  outputs a distribution of the prediction where the variance

space. Several algorithms, including the mixture of expest o the predicted distribution acts as a measure of confidence
model, classification and regression trees (CART), and othg in the prediction

have been developed, motivated by the fact that a variabiljt
in the local distribution of inputs may be reflective of a
significant change in the target variable. While these methas Another issue that arises during such regression based
can handle the non-stationarity in the relationships to vaying  modeling of the data is that often the joint distribution of
degrees, they are often not scalable and, therefore, not ube o jnpyt variables and the target variable is not homoge-
in large scale data mining applications. In this paper we Th h in the | | struct f the i t
develop Block-GP, a Gaussian Process regression framework ”e‘?us- us, changes in the _Oca struc qre 0 € Inpu
for multimodal data, that can be an order of magnitude Variables may lead to dramatic changes in the value of
more scalable than existing state-of-the-art nonlinear rgression  the target variable. Considering our Earth Science example
algorithms. The framework builds local Gaussian Processesn  from before, the model for prediction of precipitation wadul
semantically meaningful partitions of the data and provids o yery different for desert regions compared with the
higher prediction accuracy than a single global model with inf t . Th havi inal lobal del i
very high confidence. The method relies on approximating rain ore§ rgg'on' us, having a singie, global mode !n
the covariance matrix of the entire input space by smaller these situations would not work as accurately as developing
covariance matrices that can be modeled independently, and several local models. This potential non-stationary iefat
can therefore be parallelized for faster execution. Theorical  ship between the input variables and the target variable has
analysis and empirical studies on various synthetic and rda a4 {5 numerous innovations in regression modeling such as
data sets show high accuracy and scalability of Block-GP CART | networks. pi ise-li del tif
compared to existing nonlinear regression techniques. » Neural Neworks, piecewise-linear modaels, mlx_ reo
experts, and others over the last three decades. While these
methods can handle the non-stationarity in the relatiqusshi
to varying degrees, they are often not scalable and therefor

not used in large scale data mining applications.
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I. INTRODUCTION

In many application domains, it is important to predict In this paper we propose a novel Gaussian Process regres-
the value of one feature based on certain other measuresion method that takes into account the multimodal (non-
features. For example, in the Earth Sciences, predictiag thstationary) nature of the joint distribution of the inputdan
precipitation at one location given the humidity, sea stefa the target. Efficient identification of the modes (or clus}er
temperature, cloud cover, and other related factors is apan lead to a significant improvement in prediction accuracy
important step in climate modeling. For such problems.and prediction confidence due to noise suppression. The in-
simple linear regression based on minimizing the meamovation builds on the fact that the joint distribution opirts
squared error between the true and predicted values can laad outputs may likely have regions which have higher intra-
used for modeling the relationship between the input andnode covariation compared with the inter-mode covariation
the target features. The decomposition of the solution to build multiple local

In decision support systems which use these predictivenodels for the different modes also results in high scatgbil
algorithms, a prediction with low confidence may be treatecdof the method. The approximation introduced by way of
differently than if the same prediction was given with the decomposition is compensated for by the introduction
high-confidence. Thus, while the predicted value from theof a ‘complement set’ for modeling noise in the data that
regression function is clearly important, tleenfidencein improves the accuracy of the algorithm at minimal cost.



Il. BACKGROUND: GAUSSIAN PROCESS REGRESSION to scale beyond: = 1000. The numerical approximation
Rasmussen and Wiliams [1] provide an excellent in_techmques, on the other hand, fail to capture the multirhoda

troduction on Gaussian Process regression. The Gaussiffture of the training data. Assuming that multimodal data

Process regression is a generalization of standard Iineé{Y'” h_ave mterspersgld iegsl'ae "?‘“d sp%rse_blockj within t'ts
regression. IX is the training data set havingmultidimen- covariance matrix, Block- tries to identify and separate

sional observations (rows), . .., x,, with eachx; € RP the der_lse plopks from the. rest of the (sparse) matrix
and the corresponding target is represented hya vector and builds |nd|V|duaI_ Gaussian Process experts for each
v, then the standard linear regression modef i) = xw” block. It glso appro?qmately models the sparse blocks of
andy = f(x)+e wherew is a D-dimensional weight vector the covariance matrix (not modeled by the_expert_s) by an
of parameters and is additive Gaussian noise such that 2dditional Gaussian Process expert. This is equivalent to
¢ ~ N'(0,0%). The predictive mean and variance equationsapprox'mat'ng the low gating probabilities by zero without

for Gaussian Process regression are explicitly evaluating them using an expensive iterativgoal
rithm. The Block-GP method can scale upite- 1 times the

7 = K*(o’IT+K) 'y (1)  scalability of existing numerical approximation techrégu
C = K" —K*c*+K)'Kk*T ) with comparable or better accuracy.
where theij*" entry of K is k(x;,x;) and K* and K** are I11. BLOCK-GP:ALGORITHM DESCRIPTION

similarly the cross covariance matrices involving the test In this section we describe the proposed algorithm Block-
point x*. Equations 1 and 2 pose significant computationalGP for Gaussian Process regression for multimodal data.
challenge due to the requirement of inverting the covasgancWe start with the intuition behind this algorithm. Let the
matrix K of sizen?. If the number of observationsis large,  input data sefX be partitioned intok mutually exclusive
the O(n®) operation can be a bottleneck in the process ofgroups. If the data is well separated such that covariance
using Gaussian Process regression. between the data points in the different partitions is equal
Approximations are introduced in the Gaussian Procesto zero, then the covariance matriX is block diagonal
literature for either finding closed-form expressions for i  where K; of size n; x n; denotes the covariance matrix
tractable posterior distributions or for gaining compisia#dl  of all the variables in thei-th partition X;. This leads
advantage for large data sets. Smola and Bartlett [2] desscri to a block diagonal decomposition ¢ + ¢21)~! that
a sparse greedy method that finds an approximation to thallows us to usek different GPs with noise parameters
maximum aposteriori estimate by selecting an ‘active’ stibs oy, ..., 0. Similarly, we can rewrite the test covariance
of columns of K, thereby reducing the running time from K* as K* = [K; ... K] with K} of size n* x n;
O(n?) to O(nm?) wherem (m < n) is the rank of the denoting the covariance betweeri and thei'” partition
matrix approximation. Recent research by Foster et al. [3X;. The targety has the same partitions as the ingXit
has shown that if we use partial Cholesky decompositiorTherefore,y = [y; ... yx]. Using Equation 1 and the
to factorize the covariance matrix and perturb the lowdecomposition ofK* and y we can say that if the test
rank factor such that independent rows and columns fornpoint x* is best described by the data in bloék then
the principal sub-matrix, then the approximation we getwe can predicty* usingy* = K;(K; + o21)ly;. If we
is numerically stable. The generalized Bayesian committe&know that a test point is modeled by this set of Gaussian
machine [4] is another approximate technique that dividesrocesses, but do not know which Gaussian Process block
the data arbitrarily intdl/ almost equal sized partitions and (expert) best predicts the test point, then we can modify
trains a different estimator on each partition. the prediction equation so that the prediction is a weighted
For addressing non-stationarity or multimodality of data,combination of the predictions of the individual experts
the mixture of experts model for neural networks has beegiven by y* = Zle hiK}(K; + o2I)~ty; where h;
extended to a similar concept called mixture of Gaussiamepresents the weight of the prediction by the expert.
Process experts (MGP) in which individual experts modelThis weight can be determined by sogeting function that
the local dependencies in the data. Tresp proposed the firassigns a probability of the test point coming from data
MGP method where there are experts for thek modes partitioni. Now, if the data is not perfectly sparse, that is, if
of the data [5] and the gating network uses another sethe off-block diagonal entries of the covariance matrix are
of Gaussian Process classifiers to decide which test poimtot all equal to zero, then we incur some loss of information
belongs to which Gaussian Process expert. An alternativdue to the above decomposition of the prediction equation.
formulation for MGP [6] uses a Dirichlet process prior and Non-zero off-block diagonal elements indicate inter-piart
the posterior is evaluated using MCMC and Gibbs samplingcovariance which are not modeled by any of the experts
Most of the existing mixture of Gaussian Process expertindividually. To deal with this scenario we propose to
methods suffer from very serious scalability issues due tadentify all data points that are not modeled well enough
delayed convergence of iterative procedures and tend ndiy a single Gaussian Process expert, and model them using



a separate expert. Next we describe our proposed Gaussidf(y;, 0;)) to each data partition and compute the mem-
Process regression framework that consists of two step$§ership probabilitieg,; of every pointx;, j = 1...n in
namely, (i) data partitioning and (ii) training. Algorithth  the data seiX for each distribution. We then compute the
provides the pseudo code for the different phases of thentropye;; of each point based on these probabilities and
Block-GP method. make ak + 15 partition using all points that havg, > e,
where the threshold entropy;, is an input to the algorithm.
Now we refit Gaussian distributions to the new partitions
X;...X, ., so that we can compute the weiglits for a

Algorithm 1: Block-GP algorithm
Input: X € R**P y € R", x* € RY¥P k, 0, ey, s, k(xi,%;),

H
Output: y*, Vargs,Hest
Step 1: Partition the data into k& groups
[Xq,...,X}] = spectral nystrom{X, k, s, o);
Step 2: Train the Gaussian Process models
for each data partitionX;, (i = 1 : k) do

given test point for each data partition during the test phas
Finally, training a Gaussian Process on each of these data
blocks requires optimizing a set of hyperparametétsased

on the chosen covariance functiéfx;, x;) appropriate for

the data set.

i, o;]=fitGaussiank;); . s . .
%‘r ga(]:h pointx; eng((i)do Given a test point*, the task during the test phase is

pji = computeProbability(; , o, x;); to compute the prediction of the corresponding targéts
L €ji = 24—y Di log(p:); ) ) For that we first compute the weights for each Gaussian

if eji > e then X; X\ x5 X1« Xy Ux;s Process expert. We then compute the prediction mean and
variance using the respective equations.

Based on our description of the Block-GP method, we
have seen that the performance of Block-GP is dependent
on two steps: (i) spectral clustering the data for idemntifyi
blocks in the sparse covariance matrix and ii) entropy-thase
identification of noisy points in the individual blocks for
creation of a complement set. The covariance mafix
of a multimodal data seX having & modes hast non-
sparse blocks and using a permutation matrix P Forit

Unlike the traditional mixture of Gaussian Process ex-ig possible to block diagonaliz&. We claim that spectral
perts, we partition our data inté disjoint sets so that cjystering the datX also allows us to identify the blocks in
each expert is responsible for modeling the input-target; The formal proof is omitted due to lack of space. Since
relationship for only that set. We rely on spectral clustgri \ye do not use an expectation maximization based algorithm
of the input space for identifying blocks in the covariancefoy |earning thegating function and use hard clustering
matrix. Spectral clustering algorithms [7] cluster theadat for partitioning the data into disjoint sets, it is possible
based on the spectral properties or eigen analysis of th@at certain elements in each cluster are not represented
similarity matrix S constructed on the data. Spectral C|U5'accurately by the representative statistics of that ciugve
tering suffers from the same scalability issues as Gaussiaggim (proof not shown in this paper) that identifying all
Process regression due to the requirement of constructir}gbims from the clusters with high entropy is equivalent
the n x n similarity matrix. There exists several methodstg finding points in different data partitions that are have
for improving the scalability of spectral clustering. Weeus oy posterior probability given the cluster. We create a
Nystrom approximation for spectral clustering [8] which complement set from all points iX that are not modeled
computes the first: eigen vectors directly on a smaller py 5 single data partition. Since creation of the complement
subsets (< n) of the data points and then extrapolates itset helps model the effect of some of the non trivial off
to the othern — s values. block diagonal elements, it also improves the prediction

- accuracy of our method compared to that of using dnly
B. Training Block-GP experts. The computational cost of Block-GP only increases

Once the data is partitioned into blocks, Block-GP goedinearly with the number of data partitions and the number
into the training phase where three things are accomplisheaf training instances in each partition. Given a trainingXe
(i) identify points in the different data partitions thatear of sizen x D, the Block-GP algorithm has a computational
not modeled well enough by the distributions fitted to thosecomplexity of O((k + 1)nmaxD?) for calculating the mean
blocks and create a complement set using those points, (i9f the prediction wheré+1 is the number of data partitions
determine the distribution parameters for the data in eaclith sizesn,...,ni11 andn,a, = max{ni,...,ng1}.
block for computing expert weightd.() for test points, and
(iii) train a set of hyperparameter$i(.;) for each of the
data partitions. For identifying points in the complement In this section we present the results of the experiments
set, we fit a Gaussian probability distribution (denoted byconducted for Gaussian Process regression on different syn

for each data partitionx;7 (i=1:k+1)do
| [wi,0i)=fitGaussiank);

for each data partitionX,:., (i=1:k+1)do
L [?—Lest]:learnGPix; , y; ,H);

A. Data partitioning

IV. EXPERIMENTAL RESULTS



thetic and real-world data sets using Block-GP and soméest point means trying to predict the ball's position in one
of the existing Gaussian Process regression techniques. V& the 4 wells given any time instance and given the training
compare the accuracy of results obtained from these differe data describing its motion. The third data set (Califoritiay
methods using the metric normalized mean squared errowe have used in our experiments is the MODerate-resolution
defined assNMSE = #23:1(?/1‘ — y;)? wherey; is  Imaging Spectroradiometer (MODIS) data providing 500-
the observed value of the targst having variances?, meter surface reflectance data for the state of California ad
y; is the prediction ofy; and ¢ is the size of the test justed using a bidirectional reflectance distribution fiow

set. The methods that we compare our method against atBRDF). The data is collected at intervals of every 8 days
(i) standard Gaussian Process (GP) and (ii) the pivoting@hd stored ad203 x 738 image file. Each image data is
based V-formulation technique (GP-V) proposed by Fostefecorded for seven different wavelengths corresponding to
et al. [3]. Since GP-V is an approximation of GP, we only Seven different channels. Since these channels observe the
compare against GP-V when standard GP fails to scale to th&dme spatial location at the same time instances, there is
size of the training data. We do not report the comparisor® high correlation among the different bandwidths. There-
results for Tresp’s MGP technique [5] since the expectatiofore, Gaussian Process regression can be used to model
maximization iterations fail to converge for most of the the relationship between the channels for creatiirgual

data set sizes that we use for demonstrating our results. F&ensors and detecting changes in land cover. Based on
demonstrating scalability, we compare the running time ofcareful exploratory analysis and domain expert feedback,
Block-GP for different Sizes Of training data. three features (Bandl 620 - 670 nm, Band4 545 - 565 nm
Experimental setugThe GP and GP-V algorithms have been @nd Band5 1230 - 1250 nm) have been chosen to model the
run in a centralized setting using a 64-bit 2.33 GHz quadarget (Band6 1628 - 1652 nm). Since surface reflectance is
core Dell Precision 690 desktop running Red Hat Enterpris€xpected to be a function of the land cover of a region, we
Linux version 5.4 having 20GB of physical memory. The have chosen the number of modes in the data to be 10 based
Block-GP algorithm is parallelizable and has been execute@" the number of different landcover types in the stéte.

on a 64-bit Linux cluster consisting of 16 slave nodes wherel he data set contains nine years worth of data (2001-2009)
each node is a dual processor 1-U server containing tw@ffanged at the top level by the number of years where each
quad-core Intel Xeon 2.66GHz processors totaling 128 core$ear contains forty six (collected every 8 days) images and
and 128GB Ram (1Gb/Core). All centralized algorithms areh@s approximately 15 million observations.

implemented and run in MATLAB R20104 The Block- The covariance function used for all three data sets
GP code uses the Parallel Toolbox in MATLAB R2010a.iSs @ sum of two different covariance functions covSEard
Also, the individual Gaussian Processes for each partitio@nd covNoise defined as followsovSEard k(zp, z4) =

of Block-GP uses the numerical approximation based GP-\F? exp (—(zp — x4) P~ (2, — 24)/2) where P is a diago-
method for maximum scalability. nal matrix with automatic relevance determination (ARD)
Dataset descriptionWe demonstrate our results on three parametersi?, ..., 17, (D is the input dimension), and
different multimodal data sets. The first data set (tanh) is @7 iS the signal variance. The hyperparameters are:
one dimensional synthetic time series having 900 time point/log(l1),log(l2) . .. log(ip), log(of)]. covNoisek(xy, z4) =

generated by 025(p,q) wherec? is the noise variance andlp, q) is a
21—a?)—1ifs=1 Kronecker delta function which ig iff p = ¢ and zero
— T — I s = . .
Tip1 = {tanh(—tl.me e e~ (000 otherwise. The hyperparameterligy(o, ).

and then time-embedded to create a three dimensional (twa, Accuracy
inputs, one target) autoregressive time series where tthetta
is a function of the last two time points. This data set
has two modes corresponding to the two functions. Th
second data set D (http://www-psych.stanford.ednfireas/
Time-Series/SantaFe.html#setD) is a computer generat

grriiyear:la;s\rtt;(r:?: iier;?lsaiii:;:kgt?i tziiirr:(e)iigir:)r?; afo(ljj?-r\r/]v%i ompute the covariance matr_hi dueto memory I|m|t_at|ons
. : and use GP-V as the baseline for comparison. Figure 1(a)
sptenne}l. Itlhas "%'SO been time-embedded to. cregtg a tWghows the plot of the mean NMSE and the standard deviation
imensional (one input one target) autoregressive t|me$_er of NMSE for these three data sets for 50 trials of the
%xperiment. For each trial we take a random sample (75%)
%f the training examples to build the model and test it on

the test data, which is fixed for all trials. We can notice in

For our accuracy analysis, we report the results of two
different experiments. The first experiment uses the three
ultimodal data sets tanh, D and California. For the tanh
dataset we compare the results of Block-GP with standard
(faP. However, for data sets D and California, we cannot

four modes corresponding to the four wells and predicting

1For training hyperparameters we use minimize.m availallétt:/
www.GaussianProcess.org/gpml/code A version of GP-V lkas lobtained
from https://c3.ndc.nasa.gov/dl/algorithm/stableGP/ http://casoilresource.lawr.ucdavis.edu/drupal/fieatjes/GISvegl.jpg



© Training tim

3 o Block GP = Test time .
o J 009
% © GPIGP { } 3000
oox 1000|
0.04f % ¢
oon

N s 1 2 3 4 5 10 15 20
fann Datasets” oA 51 Rumber ofdata partions * Size of taining set x10° Number of data partitions

(2) NMSE for different data sets  (b) NMSE for varying modes (a) Increasing training data size (b) Increasing number of modes

® Training tim
= Test time

2
8
8

.

.

n secs

£ 2000

NMSE
o
S
8
“o—
Time
Time in secs
&
8
s
.

N
38
8

30

Figure 1. Mean and standard deviation of NMSE of Block-GPditierent Figure 2. Scalability results demonstrated on the Califodata set
data sets and data partitions

demonstrating the dependence of Block-GP on the size of
Figure 1(a) that for both tanh and D data sets the Block-GRhe training data, we vary the training set size from 15,000
performs marginally better than GP and GP-V respectivelyobservations to 5 million observations and keep the size of
For the California data set there is a 48% improvement inhe test set fixed at 1500 test points. Figure 2(a) shows

the prediction result since the plot of the time required for training the model and
NMSEgiock.cp  0.0229 testing a fixed sized test set. As expected, the test time is
= ~ 52% almost constant for all the cases and we see a linear increase

NmsEgpy  0.0443 . S : g
The variance is also verv low for the California data setm the training time as we vary the size of the training
: varl ! Very low torni set. This is because the California data set has 3 input

indicating that the hyperparameter training is sufficiemd a dimensions which makes t@(n,.., D?) Block-GP method

the model is stable. The variance is comparatively hlghe%m O(nmas) algorithm for this data set. Figure 2(b) shows

for the autoregressive time series data sets. This can Bg "0 oo i the running time of Block-GP in the same

?r:ten?gstfié?sthehl'gﬂu;rlgr:jpfff'cbc:tutnodzxzézw'lac?r:gg;gsoéfse 0gistributed experimental setup as we increase the number of
oo » Wh icu ; .~ data partitions, keeping both the size of the training amd th
prior time points in the training set due to the autoregressi ' ; . .
test set fixed. Comparing the y axis scales of Figures 2(a)

nature of the time series. and 2(b), we see that the increase in the running time for

of 'E?OUJE_ éga)odnemgncsr:?éeesgptehgeﬁerr;%i?c; E:;ZEsqzcggngcreasing number of partitions is negligible compared®® t
' u : increase in the training set size. However, the running time

data partitioning step, given a fixed number of modes 011: . : . :
the data. We use the California data set for this purposIn Figure 2(b) is not a constant, as is expected in a parallel

. . etup, since the book-keeping tasks for creating disgtbut
and report accuracy results for 10 trials of the experiment. P ping 9

) obs and submitting them to the task schedulers take an
Knowing th_at the data has 10 modes, we vary the numbéémount of time that increases as the number of parallel
of modes in our experiment from 5 to 50 and study the

oo L blocks increase.
variation in the NMSE. We can see in Figure 1(b), that the The running times reported in Figure 2 do not account

mean NMSE is lowest when we uge= 10 for our data . . A ) :
o . . . for the time required for data partitioning since different
partitioning step. This performance is in accordance with

the domain expert’s feedback of partitioning the Califarni |mplgmer_1tat|ons of spectr_al clustering will Ie_ad t(.) didiat

. . running times. Our experiments on the California data set
surface reflectance data into 10 groups. We also notice th at use 5% of the trainina data and the results of which
although the NMSE does not change considerably as we 9

. . . .-are discussed in details in Sections IV-A and IV-C, use
experiment with other number of modes, the variance in

the performance increases indicating instability of theleio a Nystrom approximation based spectral clustering imple-

which might be attributed to lack of sufficient represermtati mentation [9.]' We do npt compare the the running t|me§ of
" L Block-GP with GP-V since ones executes in a centralized
of each data partition for training the Block-GP model.

In summary, we see that Block-GP has higher predictioTetUp while the other in a distributed setup and has factors

accuracy than standard GP and GP-V for the differen ike network latency and disk i/o influencing the running
: . . ime.

multimodal data sets and this performance is dependernit

on the choice of the covariance function and the correc

knowledge of the number of modes in the data.

E. Analysis of California data set results

N In this section we analyze the performance of Block-GP

B. Scalability in comparison to GP-V on the California data set. For all
We test our algorithm for scalability on the California results reported here we have used the 2001 data for training

data set for 2001 which has 15 million training points with and 2002 for testing. A close study of the absolute error

3 input dimensions. Figure 2 shows the plot of the trainingdistribution of the two methods show that Block-GP has

time and test time separately for the Block-GP methodower prediction error (color map shown in Figure 3(a)) for

in the distributed experimental setup described earlier. F Band 6 than GP-V. GP-V has a maximum error value of



0.103 and a mean error of 0.06 while the same quantities
for Block-GP are 0.09 and 0.05 respectively. A similar study
of the predictive variances also indicate that GP-V is less
confident about predicting the target than Block-GP. This is
expected, since Block-GP has sepamtpertsin charge of
predicting different regions of California whereas GP-\6ha
just one model for predicting the different variations aad i
unable to capture the specific characteristics of the differ
regions. The comparative performance of the two methods
is captured in Figure 3(b) which shows the top 5% of
cases where GP-V performs better than Block-GP as white
dots and the top 5% of cases where Block-GP performs
better than GP-V in black dots overlayed on the map of

California color coded into ten different clusters ideetifi o experimental results validate the performance claims
by our spectral clustering algorithm. As is evident from 4t qur method on different synthetic and real-world mul-

the error plot, there is a small region in central Californiatimodal data sets. Depending on the kernel function used,
that Block-GP fails to predict as accurately as GP-V. Thisthis method allows the model to capture the non-linear
however, cannot be attributed to inaccurate modeling df thaye|ationship in the data in a highly scalable and accurate
region since we know from the color map of clustering fashion. In our future research we intend to explore how our

modeled more accurately by Block-GP than GP-V. Oneynat exploit data sparsity for scalability.

possible reason can be a noisy target which is modeled

better by a not-so-accurate model (GP-V in this case). ACKNOWLEDGMENT
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