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Abstract—Regression problems on massive data sets are
ubiquitous in many application domains including the Internet,
earth and space sciences, and finances. In many cases, regres-
sion algorithms such as linear regression or neural networks
attempt to fit the target variable as a function of the input
variables without regard to the underlying joint distribut ion
of the variables. As a result, these global models are not
sensitive to variations in the local structure of the input
space. Several algorithms, including the mixture of experts
model, classification and regression trees (CART), and others
have been developed, motivated by the fact that a variability
in the local distribution of inputs may be reflective of a
significant change in the target variable. While these methods
can handle the non-stationarity in the relationships to varying
degrees, they are often not scalable and, therefore, not used
in large scale data mining applications. In this paper we
develop Block-GP, a Gaussian Process regression framework
for multimodal data, that can be an order of magnitude
more scalable than existing state-of-the-art nonlinear regression
algorithms. The framework builds local Gaussian Processeson
semantically meaningful partitions of the data and provides
higher prediction accuracy than a single global model with
very high confidence. The method relies on approximating
the covariance matrix of the entire input space by smaller
covariance matrices that can be modeled independently, and
can therefore be parallelized for faster execution. Theoretical
analysis and empirical studies on various synthetic and real
data sets show high accuracy and scalability of Block-GP
compared to existing nonlinear regression techniques.

Keywords-Gaussian Process, regression, parallel computation

I. I NTRODUCTION

In many application domains, it is important to predict
the value of one feature based on certain other measured
features. For example, in the Earth Sciences, predicting the
precipitation at one location given the humidity, sea surface
temperature, cloud cover, and other related factors is an
important step in climate modeling. For such problems,
simple linear regression based on minimizing the mean
squared error between the true and predicted values can be
used for modeling the relationship between the input and
the target features.

In decision support systems which use these predictive
algorithms, a prediction with low confidence may be treated
differently than if the same prediction was given with
high-confidence. Thus, while the predicted value from the
regression function is clearly important, theconfidencein

the prediction is equally important. A simple model such as
linear regression does not provide us with that information.
Also, models like linear regression, in spite of being easy
to fit and being highly scalable, fail to capture nonlinear
relationships in the data. Gaussian Process regression is one
regression model that can capture nonlinear relationshipsand
outputs a distribution of the prediction where the variance
of the predicted distribution acts as a measure of confidence
in the prediction.

Another issue that arises during such regression based
modeling of the data is that often the joint distribution of
the input variables and the target variable is not homoge-
neous. Thus, changes in the local structure of the input
variables may lead to dramatic changes in the value of
the target variable. Considering our Earth Science example
from before, the model for prediction of precipitation would
be very different for desert regions compared with the
rainforest region. Thus, having a single, global model in
these situations would not work as accurately as developing
several local models. This potential non-stationary relation-
ship between the input variables and the target variable has
led to numerous innovations in regression modeling such as
CART, neural networks, piecewise-linear models, mixture of
experts, and others over the last three decades. While these
methods can handle the non-stationarity in the relationships
to varying degrees, they are often not scalable and therefore,
not used in large scale data mining applications.

In this paper we propose a novel Gaussian Process regres-
sion method that takes into account the multimodal (non-
stationary) nature of the joint distribution of the input and
the target. Efficient identification of the modes (or clusters)
can lead to a significant improvement in prediction accuracy
and prediction confidence due to noise suppression. The in-
novation builds on the fact that the joint distribution of inputs
and outputs may likely have regions which have higher intra-
mode covariation compared with the inter-mode covariation.
The decomposition of the solution to build multiple local
models for the different modes also results in high scalability
of the method. The approximation introduced by way of
the decomposition is compensated for by the introduction
of a ‘complement set’ for modeling noise in the data that
improves the accuracy of the algorithm at minimal cost.



II. BACKGROUND: GAUSSIAN PROCESS REGRESSION

Rasmussen and Williams [1] provide an excellent in-
troduction on Gaussian Process regression. The Gaussian
Process regression is a generalization of standard linear
regression. IfX is the training data set havingn multidimen-
sional observations (rows)x1, . . . ,xn, with eachxi ∈ R

D

and the corresponding target is represented by an×1 vector
y, then the standard linear regression model is:f(x) = xwT

andy = f(x)+ǫ wherew is aD-dimensional weight vector
of parameters andǫ is additive Gaussian noise such that
ǫ ∼ N (0, σ2). The predictive mean and variance equations
for Gaussian Process regression are

ŷ∗ = K∗(σ2I +K)−1y (1)

C = K∗∗ −K∗(σ2I +K)−1K∗T (2)

where theijth entry of K isk(xi,xj) andK∗ andK∗∗ are
similarly the cross covariance matrices involving the test
point x∗. Equations 1 and 2 pose significant computational
challenge due to the requirement of inverting the covariance
matrixK of sizen2. If the number of observationsn is large,
the O(n3) operation can be a bottleneck in the process of
using Gaussian Process regression.

Approximations are introduced in the Gaussian Process
literature for either finding closed-form expressions for in-
tractable posterior distributions or for gaining computational
advantage for large data sets. Smola and Bartlett [2] describe
a sparse greedy method that finds an approximation to the
maximum aposteriori estimate by selecting an ‘active’ subset
of columns ofK, thereby reducing the running time from
O(n3) to O(nm2) wherem (m ≪ n) is the rank of the
matrix approximation. Recent research by Foster et al. [3]
has shown that if we use partial Cholesky decomposition
to factorize the covariance matrix and perturb the low
rank factor such that independent rows and columns form
the principal sub-matrix, then the approximation we get
is numerically stable. The generalized Bayesian committee
machine [4] is another approximate technique that divides
the data arbitrarily intoM almost equal sized partitions and
trains a different estimator on each partition.

For addressing non-stationarity or multimodality of data,
the mixture of experts model for neural networks has been
extended to a similar concept called mixture of Gaussian
Process experts (MGP) in which individual experts model
the local dependencies in the data. Tresp proposed the first
MGP method where there arek experts for thek modes
of the data [5] and the gating network uses another set
of Gaussian Process classifiers to decide which test point
belongs to which Gaussian Process expert. An alternative
formulation for MGP [6] uses a Dirichlet process prior and
the posterior is evaluated using MCMC and Gibbs sampling.

Most of the existing mixture of Gaussian Process experts
methods suffer from very serious scalability issues due to
delayed convergence of iterative procedures and tend not

to scale beyondn = 1000. The numerical approximation
techniques, on the other hand, fail to capture the multimodal
nature of the training data. Assuming that multimodal data
will have interspersed dense and sparse blocks within its
covariance matrix, Block-GP tries to identify and separate
the dense blocks from the rest of the (sparse) matrix
and builds individual Gaussian Process experts for each
block. It also approximately models the sparse blocks of
the covariance matrix (not modeled by the experts) by an
additional Gaussian Process expert. This is equivalent to
approximating the low gating probabilities by zero without
explicitly evaluating them using an expensive iterative algo-
rithm. The Block-GP method can scale up tok+1 times the
scalability of existing numerical approximation techniques
with comparable or better accuracy.

III. B LOCK-GP: ALGORITHM DESCRIPTION

In this section we describe the proposed algorithm Block-
GP for Gaussian Process regression for multimodal data.
We start with the intuition behind this algorithm. Let the
input data setX be partitioned intok mutually exclusive
groups. If the data is well separated such that covariance
between the data points in the different partitions is equal
to zero, then the covariance matrixK is block diagonal
whereKi of size ni × ni denotes the covariance matrix
of all the variables in thei-th partition Xi. This leads
to a block diagonal decomposition of(K + σ2I)−1 that
allows us to usek different GPs with noise parameters
σ1, . . . , σk. Similarly, we can rewrite the test covariance
K∗ as K∗ = [K∗

1 . . . K∗
k ] with K∗

i of size n∗ × ni

denoting the covariance betweenx∗ and theith partition
Xi. The targety has the same partitions as the inputX.
Therefore,y = [y1 . . . yk]. Using Equation 1 and the
decomposition ofK∗ and y we can say that if the test
point x∗ is best described by the data in blocki, then
we can predicty∗ using ŷ∗ = K∗

i (Ki + σ2
i I)

−1yi. If we
know that a test point is modeled by this set of Gaussian
Processes, but do not know which Gaussian Process block
(expert) best predicts the test point, then we can modify
the prediction equation so that the prediction is a weighted
combination of the predictions of the individual experts
given by ŷ∗ =

∑k

i=1 hiK
∗
i (Ki + σ2

i I)
−1yi where hi

represents the weight of the prediction by theith expert.
This weight can be determined by somegating function that
assigns a probability of the test pointy∗ coming from data
partition i. Now, if the data is not perfectly sparse, that is, if
the off-block diagonal entries of the covariance matrix are
not all equal to zero, then we incur some loss of information
due to the above decomposition of the prediction equation.
Non-zero off-block diagonal elements indicate inter-partition
covariance which are not modeled by any of the experts
individually. To deal with this scenario we propose to
identify all data points that are not modeled well enough
by a single Gaussian Process expert, and model them using



a separate expert. Next we describe our proposed Gaussian
Process regression framework that consists of two steps,
namely, (i) data partitioning and (ii) training. Algorithm1
provides the pseudo code for the different phases of the
Block-GP method.

Algorithm 1: Block-GP algorithm
Input : X ∈ R

n×D , y ∈ R
n, x∗ ∈ R

1×D ,k, σ, eth, s, k(xi,xj),
H

Output : ŷ∗, V arŷ∗ ,Hest

Step 1: Partition the data into k groups
[X1, . . . ,Xk] = spectral nyström(X, k, s, σ);
Step 2: Train the Gaussian Process models
for each data partitionXi, (i = 1 : k) do

[µi, σi]=fitGaussian(Xi );
for each pointxj ∈ Xi do

pji = computeProbability(µi , σi,xj );
eji =

∑k
i=1

pi log(pi);
if eji > eth then X

′

i ← Xi \ xj X
′

i+1
← X

′

i+1

⋃
xj ;

for each data partitionX
′

i, (i = 1 : k + 1) do
[µi, σi]=fitGaussian(X

′

i );

for each data partitionX
′

i, (i = 1 : k + 1) do
[Hest]=learnGP(X

′

i ,y
′

i,H);

A. Data partitioning

Unlike the traditional mixture of Gaussian Process ex-
perts, we partition our data intok disjoint sets so that
each expert is responsible for modeling the input-target
relationship for only that set. We rely on spectral clustering
of the input space for identifying blocks in the covariance
matrix. Spectral clustering algorithms [7] cluster the data
based on the spectral properties or eigen analysis of the
similarity matrix S constructed on the data. Spectral clus-
tering suffers from the same scalability issues as Gaussian
Process regression due to the requirement of constructing
the n × n similarity matrix. There exists several methods
for improving the scalability of spectral clustering. We use
Nyström approximation for spectral clustering [8] which
computes the firstk eigen vectors directly on a smaller
subsets (< n) of the data points and then extrapolates it
to the othern− s values.

B. Training Block-GP

Once the data is partitioned into blocks, Block-GP goes
into the training phase where three things are accomplished:
(i) identify points in the different data partitions that are
not modeled well enough by the distributions fitted to those
blocks and create a complement set using those points, (ii)
determine the distribution parameters for the data in each
block for computing expert weights (hi) for test points, and
(iii) train a set of hyperparameters (Hest) for each of the
data partitions. For identifying points in the complement
set, we fit a Gaussian probability distribution (denoted by

N (µi, σi)) to each data partition and compute the mem-
bership probabilitiespji of every pointxj , j = 1 . . . n in
the data setX for each distribution. We then compute the
entropyeji of each point based on these probabilities and
make ak+1st partition using all points that haveeji > eth
where the threshold entropyeth is an input to the algorithm.
Now we refit Gaussian distributions to the new partitions
X

′

i . . .X
′

k+1 so that we can compute the weightshi for a
given test point for each data partition during the test phase.
Finally, training a Gaussian Process on each of these data
blocks requires optimizing a set of hyperparametersH based
on the chosen covariance functionk(xi,xj) appropriate for
the data set.

Given a test pointx∗, the task during the test phase is
to compute the prediction of the corresponding targetsy∗.
For that we first compute the weightshi for each Gaussian
Process expert. We then compute the prediction mean and
variance using the respective equations.

Based on our description of the Block-GP method, we
have seen that the performance of Block-GP is dependent
on two steps: (i) spectral clustering the data for identifying
blocks in the sparse covariance matrix and ii) entropy-based
identification of noisy points in the individual blocks for
creation of a complement set. The covariance matrixK
of a multimodal data setX having k modes hask non-
sparse blocks and using a permutation matrix P onK it
is possible to block diagonalizeK. We claim that spectral
clustering the dataX also allows us to identify the blocks in
K. The formal proof is omitted due to lack of space. Since
we do not use an expectation maximization based algorithm
for learning thegating function and use hard clustering
for partitioning the data into disjoint sets, it is possible
that certain elements in each cluster are not represented
accurately by the representative statistics of that cluster. We
claim (proof not shown in this paper) that identifying all
points from the clusters with high entropy is equivalent
to finding points in different data partitions that are have
low posterior probability given the cluster. We create a
complement set from all points inX that are not modeled
by a single data partition. Since creation of the complement
set helps model the effect of some of the non trivial off
block diagonal elements, it also improves the prediction
accuracy of our method compared to that of using onlyk
experts. The computational cost of Block-GP only increases
linearly with the number of data partitions and the number
of training instances in each partition. Given a training set X
of sizen×D, the Block-GP algorithm has a computational
complexity ofO((k + 1)nmaxD

2) for calculating the mean
of the prediction wherek+1 is the number of data partitions
with sizesn1, . . . , nk+1 andnmax = max{n1, . . . , nk+1}.

IV. EXPERIMENTAL RESULTS

In this section we present the results of the experiments
conducted for Gaussian Process regression on different syn-



thetic and real-world data sets using Block-GP and some
of the existing Gaussian Process regression techniques. We
compare the accuracy of results obtained from these different
methods using the metric normalized mean squared error,
defined as:NMSE = 1

nσ2
y

∑q

i=1(ŷi − yi)
2 where yi is

the observed value of the targety having varianceσ2
y
,

ŷi is the prediction ofyi and q is the size of the test
set. The methods that we compare our method against are
(i) standard Gaussian Process (GP) and (ii) the pivoting-
based V-formulation technique (GP-V) proposed by Foster
et al. [3]. Since GP-V is an approximation of GP, we only
compare against GP-V when standard GP fails to scale to the
size of the training data. We do not report the comparison
results for Tresp’s MGP technique [5] since the expectation
maximization iterations fail to converge for most of the
data set sizes that we use for demonstrating our results. For
demonstrating scalability, we compare the running time of
Block-GP for different sizes of training data.
Experimental setup: The GP and GP-V algorithms have been
run in a centralized setting using a 64-bit 2.33 GHz quad
core Dell Precision 690 desktop running Red Hat Enterprise
Linux version 5.4 having 20GB of physical memory. The
Block-GP algorithm is parallelizable and has been executed
on a 64-bit Linux cluster consisting of 16 slave nodes where
each node is a dual processor 1-U server containing two
quad-core Intel Xeon 2.66GHz processors totaling 128 cores
and 128GB Ram (1Gb/Core). All centralized algorithms are
implemented and run in MATLAB R2010a1. The Block-
GP code uses the Parallel Toolbox in MATLAB R2010a.
Also, the individual Gaussian Processes for each partition
of Block-GP uses the numerical approximation based GP-V
method for maximum scalability.
Dataset description: We demonstrate our results on three
different multimodal data sets. The first data set (tanh) is a
one dimensional synthetic time series having 900 time points
generated by

xt+1 =
{
2(1 − x2

t
) − 1 if s = 1

tanh(−1.2x2
t
+ ǫt+1) if s = 0 andǫ ∼ N (0, 0.1)

and then time-embedded to create a three dimensional (two
inputs, one target) autoregressive time series where the target
is a function of the last two time points. This data set
has two modes corresponding to the two functions. The
second data set D (http://www-psych.stanford.edu/∼andreas/
Time-Series/SantaFe.html#setD) is a computer generated
univariate time series describing the motion of a damped
driven particle in an asymmetric 4-dimensional four-well
potential. It has also been time-embedded to create a two
dimensional (one input one target) autoregressive time series
having 100,000 observations. We use this data set since it has
four modes corresponding to the four wells and predicting a

1For training hyperparameters we use minimize.m available at http://
www.GaussianProcess.org/gpml/code A version of GP-V has been obtained
from https://c3.ndc.nasa.gov/dl/algorithm/stableGP/

test point means trying to predict the ball’s position in one
of the 4 wells given any time instance and given the training
data describing its motion. The third data set (California)that
we have used in our experiments is the MODerate-resolution
Imaging Spectroradiometer (MODIS) data providing 500-
meter surface reflectance data for the state of California ad-
justed using a bidirectional reflectance distribution function
(BRDF). The data is collected at intervals of every 8 days
and stored as1203 × 738 image file. Each image data is
recorded for seven different wavelengths corresponding to
seven different channels. Since these channels observe the
same spatial location at the same time instances, there is
a high correlation among the different bandwidths. There-
fore, Gaussian Process regression can be used to model
the relationship between the channels for creatingVirtual
Sensors and detecting changes in land cover. Based on
careful exploratory analysis and domain expert feedback,
three features (Band1 620 - 670 nm, Band4 545 - 565 nm
and Band5 1230 - 1250 nm) have been chosen to model the
target (Band6 1628 - 1652 nm). Since surface reflectance is
expected to be a function of the land cover of a region, we
have chosen the number of modes in the data to be 10 based
on the number of different landcover types in the state.2.
The data set contains nine years worth of data (2001-2009)
arranged at the top level by the number of years where each
year contains forty six (collected every 8 days) images and
has approximately 15 million observations.

The covariance function used for all three data sets
is a sum of two different covariance functions covSEard
and covNoise defined as follows:covSEard: k(xp, xq) =
σ2
f exp (−(xp − xq)P

−1(xp − xq)/2) where P is a diago-
nal matrix with automatic relevance determination (ARD)
parametersl21, ..., l

2
D (D is the input dimension), and

σ2
f is the signal variance. The hyperparameters are:

[log(l1), log(l2) . . . log(lD), log(σf )]. covNoise: k(xp, xq) =
σ2
nδ(p, q) whereσ2

n is the noise variance andδ(p, q) is a
Kronecker delta function which is1 iff p = q and zero
otherwise. The hyperparameter islog(σn).

A. Accuracy

For our accuracy analysis, we report the results of two
different experiments. The first experiment uses the three
multimodal data sets tanh, D and California. For the tanh
dataset we compare the results of Block-GP with standard
GP. However, for data sets D and California, we cannot
compute the covariance matrixK due to memory limitations
and use GP-V as the baseline for comparison. Figure 1(a)
shows the plot of the mean NMSE and the standard deviation
of NMSE for these three data sets for 50 trials of the
experiment. For each trial we take a random sample (75%)
of the training examples to build the model and test it on
the test data, which is fixed for all trials. We can notice in

2http://casoilresource.lawr.ucdavis.edu/drupal/files/images/GISveg1.jpg
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Figure 1. Mean and standard deviation of NMSE of Block-GP fordifferent
data sets and data partitions

Figure 1(a) that for both tanh and D data sets the Block-GP
performs marginally better than GP and GP-V respectively.
For the California data set there is a 48% improvement in
the prediction result since

NMSEBlock-GP

NMSEGP-V
=

0.0229

0.0443
≈ 52%

. The variance is also very low for the California data set
indicating that the hyperparameter training is sufficient and
the model is stable. The variance is comparatively higher
for the autoregressive time series data sets. This can be
attributed to the inclusion of boundary (switching) pointsin
the test sets, which are difficult to model in the absence of
prior time points in the training set due to the autoregressive
nature of the time series.

Figure 1(b) demonstrates the dependence of the accuracy
of Block-GP on the choice of the number of blocks in the
data partitioning step, given a fixed number of modes of
the data. We use the California data set for this purpose
and report accuracy results for 10 trials of the experiment.
Knowing that the data has 10 modes, we vary the number
of modes in our experiment from 5 to 50 and study the
variation in the NMSE. We can see in Figure 1(b), that the
mean NMSE is lowest when we usek = 10 for our data
partitioning step. This performance is in accordance with
the domain expert’s feedback of partitioning the California
surface reflectance data into 10 groups. We also notice that
although the NMSE does not change considerably as we
experiment with other number of modes, the variance in
the performance increases indicating instability of the model
which might be attributed to lack of sufficient representation
of each data partition for training the Block-GP model.
In summary, we see that Block-GP has higher prediction
accuracy than standard GP and GP-V for the different
multimodal data sets and this performance is dependent
on the choice of the covariance function and the correct
knowledge of the number of modes in the data.

B. Scalability

We test our algorithm for scalability on the California
data set for 2001 which has 15 million training points with
3 input dimensions. Figure 2 shows the plot of the training
time and test time separately for the Block-GP method
in the distributed experimental setup described earlier. For
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Figure 2. Scalability results demonstrated on the California data set

demonstrating the dependence of Block-GP on the size of
the training data, we vary the training set size from 15,000
observations to 5 million observations and keep the size of
the test set fixed at 1500 test points. Figure 2(a) shows
the plot of the time required for training the model and
testing a fixed sized test set. As expected, the test time is
almost constant for all the cases and we see a linear increase
in the training time as we vary the size of the training
set. This is because the California data set has 3 input
dimensions which makes theO(nmaxD

2) Block-GP method
an O(nmax) algorithm for this data set. Figure 2(b) shows
the increase in the running time of Block-GP in the same
distributed experimental setup as we increase the number of
data partitions, keeping both the size of the training and the
test set fixed. Comparing the y axis scales of Figures 2(a)
and 2(b), we see that the increase in the running time for
increasing number of partitions is negligible compared to the
increase in the training set size. However, the running time
in Figure 2(b) is not a constant, as is expected in a parallel
setup, since the book-keeping tasks for creating distributed
jobs and submitting them to the task schedulers take an
amount of time that increases as the number of parallel
blocks increase.

The running times reported in Figure 2 do not account
for the time required for data partitioning since different
implementations of spectral clustering will lead to different
running times. Our experiments on the California data set
that use 5% of the training data and the results of which
are discussed in details in Sections IV-A and IV-C, use
a Nyström approximation based spectral clustering imple-
mentation [9]. We do not compare the the running times of
Block-GP with GP-V since ones executes in a centralized
setup while the other in a distributed setup and has factors
like network latency and disk i/o influencing the running
time.

C. Analysis of California data set results

In this section we analyze the performance of Block-GP
in comparison to GP-V on the California data set. For all
results reported here we have used the 2001 data for training
and 2002 for testing. A close study of the absolute error
distribution of the two methods show that Block-GP has
lower prediction error (color map shown in Figure 3(a)) for
Band 6 than GP-V. GP-V has a maximum error value of



0.103 and a mean error of 0.06 while the same quantities
for Block-GP are 0.09 and 0.05 respectively. A similar study
of the predictive variances also indicate that GP-V is less
confident about predicting the target than Block-GP. This is
expected, since Block-GP has separateexpertsin charge of
predicting different regions of California whereas GP-V has
just one model for predicting the different variations and is
unable to capture the specific characteristics of the different
regions. The comparative performance of the two methods
is captured in Figure 3(b) which shows the top 5% of
cases where GP-V performs better than Block-GP as white
dots and the top 5% of cases where Block-GP performs
better than GP-V in black dots overlayed on the map of
California color coded into ten different clusters identified
by our spectral clustering algorithm. As is evident from
the error plot, there is a small region in central California
that Block-GP fails to predict as accurately as GP-V. This
however, cannot be attributed to inaccurate modeling of that
region since we know from the color map of clustering
that other test points that belong to that cluster have been
modeled more accurately by Block-GP than GP-V. One
possible reason can be a noisy target which is modeled
better by a not-so-accurate model (GP-V in this case).
There is another region of white dots near the Mojave
desert area of California where GP-V performs better than
Block-GP. This might be indicative of the partitioning of
the data into one too many clusters in that region leading
to poor representation of data for the smaller cluster. It
is possible that the two clusters in that region should be
merged to a single cluster due to very high similarity in
their characteristics. All black dots in Figure 3(b) represent
points where Block-GP performs significantly better than
GP-V. Most of these points lie in smaller clusters identified
by our spectral clustering algorithm and can be explained
by the lack of representation of training points from those
regions while learning a single model for GP-V.

V. CONCLUSION

In this paper we have presented a new method for scaling
up Gaussian Process regression for multimodal data. Com-
pared to existing techniques, our proposed method shows
comparable or improved prediction accuracy for different
multimodal data sets. The confidence in prediction is also
higher compared to a single model. The theoretical bounds
on the scalability improve the existing state-of-the-art by
a factor of k + 1, for a data set withk modes. Since
the proposed solution is decomposable, the training of the
individual Gaussian Process blocks is parallelizable, thereby
speeding up the total training time of the method to match
that of training a single Gaussian Process expert. This
method offers interpretability of the sparse solution since
the different blocks identified by the spectral clustering
algorithm can be traced back to the different modes of
the actual data set providing better insight into the model.
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Figure 3. Performance of Block-GP on California data set

Our experimental results validate the performance claims
of our method on different synthetic and real-world mul-
timodal data sets. Depending on the kernel function used,
this method allows the model to capture the non-linear
relationship in the data in a highly scalable and accurate
fashion. In our future research we intend to explore how our
method performs compared to existing regression techniques
that exploit data sparsity for scalability.
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