SPARSE INVERSE GAUSSIAN PROCESS REGRESSION WITH APPLICATION TO CLIMATE NETWORK DISCOVERY

Shared by Kamalika Das on Feb 28, 2013

Summary

Author(s) :
Kamalika Das, Ashok N. Srivastava
Abstract

Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to large data sets since prediction based on the learned model requires inversion of an order n kernel matrix. Approximate solutions for sparse Gaussian Processes have been proposed for sparse problems. However, in almost all cases, these solution techniques are agnostic to the input domain and do not preserve the similarity structure in the data. As a result, although these solutions sometimes provide excellent accuracy, the models do not have interpretability. Such interpretable sparsity patterns are very important for many applications. We propose a new technique for sparse Gaussian Process regression that allows us to compute a parsimonious model while preserving the interpretability of the sparsity structure in the data. We discuss how the inverse kernel matrix used in Gaussian Process prediction gives valuable domain information and then adapt the inverse covariance estimation from Gaussian graphical models to estimate the Gaussian kernel. We solve the optimization problem using the alternating direction method of multipliers that is amenable to parallel computation. We demonstrate the performance of our method in terms of accuracy, scalability and interpretability on a climate data set.

show more info
Publication Name
N/A
Publication Location
N/A
Year Published
N/A

Files

CIDU_SpiGP.pdf
CIDU 2011 Paper
2029339 176 downloads

Discussions

Log in to start a discussion.