Youngwook Kim

Member since: Feb 07, 2013, University of Montana

Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth

Shared by Youngwook Kim on Feb 07, 2013


Author(s) :
Kim, Y., Kimball J. S., Zhang K., and McDonald K. C.

The landscape freeze–thaw (FT) signal from satellite microwave remote sensing is closely linked to vegetation phenology and land–atmosphere trace gas exchangewhere seasonal frozen temperatures are a major constraint to plant growth. We applied a temporal change classification of 37 GHz brightness temperature (Tb) series from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I) to classify daily FT status over global land areaswhere seasonal frozen temperatures influence ecosystemprocesses. A temporally consistent, long-term (30 year) FT record was created, ensuring cross-sensor consistency through pixel-wise adjustment of the SMMRTb record based on empirical analyses of overlapping SMMRand SSM/I measurements. The resulting FT record showed mean annual spatial classification accuracies of 91 (+/−8.6) and 84 (+/−9.3) percent for PM and AM overpass retrievals relative to in situ air temperature measurements from the global weather station network. The FT results were compared against other measures of biosphere activity including CO2 eddy flux tower measurements and satellite (MODIS) vegetation greenness (NDVI). The FT defined non-frozen season largely bounds the period of active vegetation growth and net ecosystem CO2 uptake for tower sites representing major biomes. Earlier spring thawing and longer non-frozen seasons generally benefit vegetation growth inferred from NDVI spring and summer growth anomalies where the non-frozen season is less than approximately 6 months, with greater benefits at higher (>45 °N) latitudes. A strong (Pb0.001) increasing (0.189 days yr−1) trend in the Northern Hemispheremean annual non-frozen season is largely driven by an earlier (−0.149 days yr−1) spring thaw trend and coincideswith a 0.033 °C yr−1 regional warming trend. The FT record also shows a positive (0.199 days yr−1) trend in the number of transitional (AM frozen and PM non-frozen) frost days, which coincide with reduced vegetation productivity inferred from tower CO2 and MODIS NDVI measurements. The relative benefits of earlier and longer non-frozen seasons for vegetation growth under global warming may be declining due to opposing increases in disturbance, drought and frost damage related impacts.

show more info
Publication Name
Publication Location
Year Published



Log in to start a discussion.


Want to run your code on NASA resources? Find out more about the NEX Sandbox

Youngwook's Projects (0)

You're not involved in any projects

Browse for projects

Need help?

Visit our help center